3D Gravity Inversion using Tikhonov Regularization

Czasopismo : Acta Geophysica
Tytuł artykułu : 3D Gravity Inversion using Tikhonov Regularization

Autorzy :
Białecki, M.
Institute of Geophysics, Polish Academy of Sciences, Warszawa, Poland, bialecki@igf.edu.pl,
Bevis, M.
School of Earth Sciences, Ohio State University, Columbus, Ohio, USA, mbevis@osu.edu,
Pan, E.
Department of Civil Engineering, University of Akron, Akron, Ohio, USA,
Zhou, H.
School of Earth Sciences, Ohio State University, Columbus, Ohio, USA,
Han, F.
Department of Civil Engineering, University of Akron, Akron, Ohio, USA,
Zhu, R.
Department of Civil Engineering, University of Akron, Akron, Ohio, USA,
Sun, Q.
School of Resources and Geosciences, China University of Mining and Technology, Xuzhou, China, sunqiang04@126.com,
Xue, L.
Key Laboratory of Shale Gas and Geoengineering, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China,
Zhu, S.
School of Resources and Geosciences, China University of Mining and Technology, Xuzhou, China,
Hekmatian, M. E.
Faculty of Basic Sciences of Science and Research Branch, Islamic Azad University, Tehran, Iran; Nuclear Fuel Cycle Research School of Nuclear Science and Technology Research Institute (NSTRI), Tehran, Iran, mhekmatian@aeoi.org.ir,
Ardestani, V. E.
Institute of Geophysics, University of Tehran, Tehran, Iran, ebrahimz@ut.ac.ir,
Riahi, M. A.
Institute of Geophysics, University of Tehran, Tehran, Iran, mariahi@ut.ac.ir,
Bagh, A. M. K.
Nuclear Fuel Cycle Research School of Nuclear Science and Technology Research Institute (NSTRI), Tehran, Iran; Faculty of Engineering of South Tehran Branch, Islamic Azad University, Tehran, Iran, amemar@aeoi.org.ir,
Amini, J.
Faculty of Engineering, University of Tehran, Tehran, Iran, jamini@ut.ac.ir,
Cheng, B.
State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Chengdu University of Technology, Chengdu, China / Key Laboratory of Earth Exploration and Information Technology of Ministry of Education, Chengdu University of Technology, Chengdu, China / Meteorological Information and Signal Processing / Key Laboratory of Sichuan Higher Education Institutes, Chengdu University of Information Technology, Chengdu, China, chengbingjie09@cdut.cn,
Xu, T.
3rd Geophysical Institute, Exploration and Production Institute, Southwest Oil and Gas Company, SINOPEC, Chengdu, China,
Robbins, B.
Fugro Aperio, Fugro Onshore Geotechnics, Wallingford, Oxfordshire, UK,
Shen, Z. M.
State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Chengdu University of Technology, Chengdu, China,
Toushmalani, R.
Department of Computer, Faculty of Engineering, Kangavar Branch, Islamic Azad University, Kangavar, Iran, geoman110@gmail.com,
Saibi, H.
Laboratory of Exploration Geophysics, Department of Earth Resources Engineering, Faculty of Engineering, Kyushu University, Fukuoka, Japan, saibi-hakim@mine.kyushu-u.ac.jp,
Abstrakty : Subsalt exploration for oil and gas is attractive in regions where 3D seismic depth-migration to recover the geometry of a salt base is difficult. Additional information to reduce the ambiguity in seismic images would be beneficial. Gravity data often serve these purposes in the petroleum industry. In this paper, the authors present an algorithm for a gravity inversion based on Tikhonov regularization and an automatically regularized solution process. They examined the 3D Euler deconvolution to extract the best anomaly source depth as a priori information to invert the gravity data and provided a synthetic example. Finally, they applied the gravity inversion to recently obtained gravity data from the Bandar Charak (Hormozgan, Iran) to identify its subsurface density structure. Their model showed the 3D shape of salt dome in this region.

Słowa kluczowe : gravity inversion, base salt, Tikhonov regularization, Euler deconvolution, Bandar Charak,
Wydawnictwo : Instytut Geofizyki PAN
Rocznik : 2015
Numer : Vol. 63, no. 4
Strony : 1044 – 1065
Bibliografia : 1 Bear, G.W., H.J. Al-Shukri, and A.J. Rudman (1995), Linear inversion of gravity data for 3-D density distributions, Geophysics 60, 5, 1354-1364, DOI: 10.1190/1.1443871.
2 Bosák, P., J. Jaroš, J. Spudil, and P. Sulovoský (1998), Salt plugs in the eastern Zagros, Iran: Results of regional geological reconnaissance, Geolines 7, 1, 3-180.
3 Camacho, A.G., F.G. Montesinos, and R. Vieira (2000), Gravity inversion by means of growing bodies, Geophysics 65, 1, 95-101, DOI: 10.1190/1.1444729.
4 Camacho, A.G., F.G. Montesinos, and R. Vieira (2002), A 3-D gravity inversion tool based on exploration of model possibilities, Comput. Geosci. 28, 2, 191-204, DOI: 10.1016/S0098-3004(01)00039-5.
5 Camacho, A.G., J. Fernández, and J. Gottsmann (2011), The 3-D gravity inversion package GROWTH2.0 and its application to Tenerife Island, Spain, Comput.Geosci. 37, 4, 621-633, DOI: 10.1016/j.cageo.2010.12.003.
6 Cheng, D. (2003), Inversion of gravity data for base salt, M.Sc. Thesis, Colorado School of Mines, Golden, USA, 95 pp.
7 El Dawi, M.G., T. Liu, H. Shi, and D. Luo (2004), Depth estimation of 2-D magnetic anomalous sources by using Euler deconvolution method, Am. J. Appl. Sci. 1, 3, 209-214, DOI: 10.3844/ajassp.2004.209.214.
8 Esmaeil Zadeh, A., F. Doulati Ardejani, M. Ziaii, and M. Mohammado Khorasani (2010), Investigation of salt plugs intrusion into Dehnow anticline using image processing and geophysical magnetotelluric methods, Russ. J. Earth Sci. 11, ES3008, DOI: 10.2205/2009ES000375.
9 Farmani, F. (2003), Gravity Explorations Report in Namakin-Charak Region, NIOC Press, 129 pp. (in Persian).
10 Hansen, R.O., and L. Suciu (2002), Multiple-source Euler deconvolution, Geophysics 67, 2, 525-535, DOI: 10.1190/1.1468613.
11 Hsu, S-K. (2002), Imaging magnetic sources using Euler’s equation, Geophys. Prospect. 50, 1, 15-25, DOI: 10.1046/j.1365-2478.2001.00282.x.
12 Jones, R.E. (2006), Automatically regularized nonnegative solutions for illconditioned linear systems. In: Proc. 2006 Inverse Problems in Engineering and Science Conf., 13 pp.
13 Lawson, C.L., and R.J. Hanson (1995), Solving Least Squares Problems, Classics in Applied Mathematics, Vol. 15, SIAM, Philadelphia, 337 pp., DOI: 10.1137/ 1.9781611971217.fm.
14 Li, Y. (2012), Recent advances in 3D generalized inversion of potential-field data. In: Proc. 82nd SEG Annual Meeting, 4-9 November 2012, Las Vegas, USA, Vol. 2, 878-884.
15 Li, Y., and D.W. Oldenburg (1998), 3-D inversion of gravity data, Geophysics 63, 1, 109-119, DOI: 10.1190/1.1444302.
16 Mushayandebvu, M.F., P. van Driel, A.B. Reid, and J.D. Fairhead (2001), Magnetic source parameters of two-dimensional structures using extended Euler deconvolution, Geophysics 66, 3, 814-823, DOI: 10.1190/1.1444971.
17 Nabighian, M.N., V.J.S. Grauch, R.O. Hansen, T.R. LaFehr, Y. Li, J.W. Peirce, J.D. Phillips, and M.E. Ruder (2005), The historical development of the magnetic method in exploration, Geophysics 70, 6, 33ND-61ND, DOI: 10.1190/1.2133784.
18 Nagy, D., G. Papp, and J. Benedek (2000), The gravitational potential and its derivatives for the prism, J. Geodesy 74, 7-8, 552-560, DOI: 10.1007/ s001900000116.
19 Pick, M., J. Picha, and V. Vyskočil (1973), Theory of the Earth’s Gravity Field, Elsevier, Amsterdam.
20 Reid, A.B., J.M. Allsop, H. Granser, A.J. Millett, and I.W. Somerton (1990), Magnetic interpretation in three dimensions using Euler deconvolution, Geophysics 55, 1, 80-91, DOI: 10.1190/1.1442774.
21 Rim, H., Y.S. Park, M. Lim, S.B. Koo, and B.D. Kwon (2007), 3D gravity inversion with Euler deconvolution as a priori information, Explor. Geophys. 38, 1, 44-49, DOI: 10.1071/EG07010.
22 Saibi, H., J. Nishijima, T. Hirano, Y. Fujimitsu, and S. Ehara (2008), Relation between structure and low-temperature geothermal systems in Fukuoka city, southwestern Japan, Earth Planets Space 60, 8, 821-826, DOI: 10.1186/ BF03352833.
23 Thompson, D.T. (1982), EULDPH: A new technique for making computer-assisted depth estimates from magnetic data, Geophysics 47, 1, 31-37, DOI: 10.1190/1.1441278.
24 Toushmalani, R. (2011), Application of fuzzy c-means algorithm in Euler deconvolution depth optimization, Int. J. Acad. Res. 3, 2, 44-48. Toushmalani, R., and M. Hemati (2013), Euler deconvolution of 3D gravity data interpretation: New approach, J. Appl. Sci. Agric. 8, 5, 696-700.
25 Toushmalani, R., and H. Saibi (2015), Fast 3D inversion of gravity data using Lanczos bidiagonalization method, Arab. J. Geosci. 8, 7, 4969-4981, DOI: 10.1007/s12517-014-1534-4.
DOI :
Cytuj : Białecki, M. ,Bevis, M. ,Pan, E. ,Zhou, H. ,Han, F. ,Zhu, R. ,Sun, Q. ,Xue, L. ,Zhu, S. ,Hekmatian, M. E. ,Ardestani, V. E. ,Riahi, M. A. ,Bagh, A. M. K. ,Amini, J. ,Cheng, B. ,Xu, T. ,Robbins, B. ,Shen, Z. M. ,Toushmalani, R. ,Saibi, H. , 3D Gravity Inversion using Tikhonov Regularization. Acta Geophysica Vol. 63, no. 4/2015
facebook