3D non-hydrostatic modelling of bottom stability under impact of the turbulent ship propeller jet

Czasopismo : Acta Geophysica
Tytuł artykułu : 3D non-hydrostatic modelling of bottom stability under impact of the turbulent ship propeller jet

Autorzy :
Rowiński, P.
Institute of Geophysics, Polish Academy of Sciences, Księcia Janusza 64, 01-452 Warszawa, Poland, pawelr@igf.edu.pl,
Nikora, V.
Engineering Department, University of Aberdeen, King’s College, Scotland, UK, v.nikora@abdn.ac.uk,
Majewski, W.
Institute of Meteorology and Water Management, ul. Podleśna 61, 01-673 Warszawa, Poland, Wojciech_Majewski@imgw.pl,
Aberle, J.
Leichtweiss-Institute for Hydraulic Engineering, Technical University of Braunschweig, Beethovenstr. 51, 38106 Braunschweig, Germany, j.aberle@tu-bs.de,
Dittrich, A.
Leichtweiss-Institut of Hydraulic Engineering (LWI), Department of Hydraulic Engineering, Beethovenstrasse 51a, 38106 Braunschweig, Germany, a.dittrich@tu-bs.de,
Brovchenko, I.
Ukrainian Center of Environmental and Water Projects Glushkova Prospect 42, 03187, Kiev, Ukraine, brovchik@env.kiev.ua,
Abstrakty : New three-dimensional numerical non-hydrostatic model with a free surface that was designed for modelling the bottom and bank stability subjected by ship propeller jets is presented. Unlike all known models, it describes three-dimensional fields of velocities generated by ship propellers, turbulence intensity and length scale in the given domain of arbitrary bottom and coastal topography. Results of simulations are compared with the laboratory experiments.

Słowa kluczowe : non-hydrostatic model, turbulent propeller jet, bottom erosion,
Wydawnictwo : Instytut Geofizyki PAN
Rocznik : 2007
Numer : Vol. 55, no. 1
Strony : 47 – 55
Bibliografia : Blaauw, H.G., and E.J. van de Kaa, 1978, Erosion of bottom and sloping banks caused by the screw-race of maneuvering ships, Proc. 7th Intern. Harbour Congress, Antwerp, May 22-26, 1978.
Blumberg, A.F., and G.L. Mellor, 1987, A description of a three-dimensional coastal ocean model. In: N.S. Heaps (ed.), “Three Dimensional Coastal Ocean Models”, 1-16, American Geophysical Union, Washington, DC.
Donnell, B.P., 2001, Users Guide to SED2D WES Version 4.5, 164 pp., Engineer Research and Development Center Waterways Experiment Station Coastal and Hydraulics Laboratory.
Ezer, T., and G.L. Mellor, 2004, A generalized coordinate ocean model and a comparison of the bottom boundary layer dynamics in terrain-following and in z-levels grids, Ocean Modelling 6, 379-403.
Jia, Y., and S. Wang, 1997, CCHE2D: a two-dimensional hydrodynamic and sediment transport model for unsteady open channel flows over loose bed, Techn. Report: No.CCHE-TR-97-2, School of Engineering, The University of Mississippi, 38 pp.
Kanarska, Y., and V. Maderich, 2003, A non-hydrostatic numerical model for calculating free surface stratified flows, Ocean Dynamics 53, 176-185.
Mellor, G., and T. Yamada, 1982, Development of a turbulence closure model for geophysical fluid problems, Reviews of Geophysics and Space Physics 20, 851-875.
Mike-21 CAMS, 2003, Coastal Area Morphological Shell, DHI Water & Environment, Users Guide, 96 pp.
Palma, E.D., and R.P. Matano, 1996, On the implementation of open boundary conditions to a general circulation model: The barotropic model, J. Geophys. Res. 103, 1319-1341.
Schokking, L., 2002, Bowthruster-induced Damage, MSc Thesis, Technical University Delft, 143 pp.
Cytuj : Rowiński, P. ,Nikora, V. ,Majewski, W. ,Aberle, J. ,Dittrich, A. ,Brovchenko, I. , 3D non-hydrostatic modelling of bottom stability under impact of the turbulent ship propeller jet. Acta Geophysica Vol. 55, no. 1/2007