A comparison of the estimated effective elastic thickness of the lithosphere using terrestrial and satellite-derived data in Iran

Czasopismo : Acta Geophysica
Tytuł artykułu : A comparison of the estimated effective elastic thickness of the lithosphere using terrestrial and satellite-derived data in Iran

Autorzy :
Nowożyński, K.
Institute of Geophysics, Polish Academy of Sciences, Warszawa, Poland, kn@igf.edu.pl,
Ślęzak, K.
Institute of Geophysics, Polish Academy of Sciences, Warszawa, Poland, katarzyna.slezak@igf.edu.pl,
Kądziałko-Hofmokl, M.
Institute of Geophysics, Polish Academy of Sciences, Warszawa, Poland, magdahof@igf.edu.pl,
Szczepański, J.
Institute of Geological Sciences, University of Wrocław, Wrocław, Poland, jacek.szczepanski@ing.uni.wroc.pl,
Werner, T.
Institute of Geophysics, Polish Academy of Sciences, Warszawa, Poland, twerner@igf.edu.pl,
Jeleńska, M.
Institute of Geophysics, Polish Academy of Sciences, Warszawa, Poland, bogna@igf.edu.p,
Nejbert, K.
Institute of Geochemistry, Mineralogy and Petrology, Warsaw University, Warszawa, Poland, knejbert@uw.edu.pl,
Shireesha, M.
National Geophysical Research Institute, Council of Scientific and Industrial Research, Hyderabad, India, shireeshageo.m@gmail.com,
Harinarayana, T.
National Geophysical Research Institute, Council of Scientific and Industrial Research, Hyderabad, India, thari54@yahoo.com,
Romashkova, L.
Institute of Earthquake Prediction Theory and Mathematical Geophysics, Russian Academy of Sciences, Moscow, Russia, lina@mitp.ru,
Peresan, A.
The Abdus Salam International Centre for Theoretical Physics, SAND Group, Trieste, Italy,
Arosio, D.
Department of Structural Engineering, Politecnico di Milano, Milan, Italy, diego.arosio@polimi.it,
Longoni, L.
Department of Environmental, Hydraulic, Infrastructures and Surveying Engineering, Politecnico di Milano, Milan, Italy, laura.longoni@polimi.it,
Papini, M.
Department of Environmental, Hydraulic, Infrastructures and Surveying Engineering, Politecnico di Milano, Milan, Italy, monica.papini@polimi.it,
Zanzi, L.
Department of Structural Engineering, Politecnico di Milano, Milan, Italy, luigi.zanzi@polimi.it,
Kostecki, A.
Oil and Gas Institute, Kraków, Poland, kostecki@inig.pl,
Półchłopek, A.
Oil and Gas Institute, Kraków, Poland, polchlopek@inig.pl,
Abbaszadeh, M.
Department of Surveying and Geomatics Engineering, Faculty of Civil Engineering, Babol Noushirvani University of Technology, Babol, Iran, m.abbaszadeh@nit.ac.ir,
Sharifi, M.
Department of Surveying and Geomatics Engineering, College of Engineering, University of Tehran, Tehran, Iran, sharifi@ut.ac.ir,
Nikkhoo, M.
Faculty of Geodesy and Geomatics, K.N. Toosi University of Technology, Tehran, Iran, Mehdi_nikkhoo@yahoo.com,
Abstrakty : The effective elastic thickness of the lithosphere has an important role in constraining compositional structure, geothermal gradient and tectonic forces within the lithosphere and the thickness of this layer can be used to evaluate the earthquakes’ focal depth. Hence, assessment of the elastic thickness of the lithosphere by gravitational admittance method in Iran is the main objective of this paper. Although the global geopotential models estimated from the satellite missions and surface data can portray the Earth’s gravity field in high precision and resolution, there are some debates about using them for lithosphere investigations. We used both the terrestrial data which have been provided by NCC (National Cartographic Center of Iran) and BGI (Bureau Gravimetrique International), and the satellite-derived gravity and topography which are generated by EIGEN-GL04C and ETOPO5, respectively. Finally, it is concluded that signal content of the satellite-derived data is as rich as the terrestrial one and it can be used for the determination of the lithosphere bending.

Słowa kluczowe : satellite-derived data, spectral analysis, gravitational admittance, noise,
Wydawnictwo : Instytut Geofizyki PAN
Rocznik : 2013
Numer : Vol. 61, no. 3
Strony : 638 – 648
Bibliografia : Anderson, R.N., D. McKenzie, and J.G. Sclater (1973), Gravity, bathymetry and convection in the Earth, Earth Planet. Sci. Lett. 18, 3, 391-407, DOI:10.1016/0012-821X(73)90095-2.
Berberian, M. (1995), Master “blind” thrust faults hidden under the Zagros folds: Active basement tectonics and surface morphotectonics, Tectonophysics 241, 3-4, 193-224, DOI: 10.1016/0040-1951(94)00185-C.
Dewey, J.F., M.R. Hempton, W.S.F. Kidd, F. Saroglu, and A.M.C. Şengör (1986), Shortening of continental lithosphere: the neotectonics of Eastern Anatolia – a young collision zone, Geol. Soc. London, Spec. Publ. 19, 1-36.
Engdahl, E.R., A.J. Jackson, S.C. Myers, E.A. Bergman, and K. Priestly (2006), Relocation and assessment of seismicity in the Iran region, Geophys. J. Int. 167, 2, 761-778, DOI: 10.1111/j.1365-246X.2006.03127.x.
Förste, C., F. Flechtner, R. Schmidt, R. König, U. Meyer, R. Stubenvoll, M. Rothacher, F. Barthelmes, H. Neumayer, R. Biancale, S. Bruinsma, J.-M. Lemoine, and S. Loyer (2006), Global mean gravity field models from combination of satellite mission and altimetry/gravimetry surface data. In: Proc. 3rd Int. GOCE User Workshop, ESA/ESRIN, 6-8 November 2006, Frascati, Italy.
Galán, R.A., and I.F. Casallas (2010), Determination of effective elastic thickness of the Colombian Andes using satellite-derived gravity data, Earth Sci. Res. J. 14, 1, 7-16.
Hempton, M.R. (1987), Constraints on Arabian Plate motion and extensional history of the Red Sea, Tectonics 6, 6, 687-705, DOI: 10.1029/TC006i006p00687.
Hofmann-Wellenhof, B., and H. Moritz (2006), Physical Geodesy, 2nd ed., Springer, Wien – New York, 403 pp.
Jackson, J., and D. McKenzie (1984), Active tectonics of the Alpine-Himalayan Belt between western Turkey and Pakistan, Geophys. J. Roy. Astr. Soc. 77, 1, 185-264, DOI: 10.1111/j.1365-246X.1984.tb01931.x.
Jekeli, C. (1981), Alternative methods to smooth the Earth’s gravity field, Report No. 327, Dept. Geodetic Science and Surveying, Ohio State Univ., Columbus, USA.
Maggi, A., J.A. Jackson, D. McKenzie, and K. Priestley (2000), Earthquake focal depths, effective elastic thickness, and the strength of the continental lithosphere, Geology 28, 6, 495-498, DOI: 10.1130/0091-7613(2000)28<495:EFDEET>2.0.CO;2.
McClusky, S., S. Balassanian. A. Barka, C. Demir, S. Ergintav, I. Georgiev, O. Gurkan, M. Hamburger, K. Hurst, H. Kahle, K. Kastens, G. Kekelidze, R. King, V. Kotzev, O. Lenk, S. Mahmoud, A. Mishin, M. Nadariya, A. Ouzounis, D. Paradissis, Y. Peter, M. Prilepin, R. Reilinger, I. Sanli, H. Seeger, A. Tealeb, M.N. Toksöz, and G. Veis (2000), Global Positioning System constraints on plate kinematics and dynamics in the eastern Mediterranean and Caucasus, J. Geophys. Res. 105, B3, 5695-5719, DOI:10.1029/1996JB900351.
McKenzie, D. (1972), Active tectonics of the Mediterranean region, Geophys. J. Roy. Astr. Soc. 30, 2, 109-185, DOI: 10.1111/j.1365-246X.1972.tb02351.x.
McKenzie, D., and D. Fairhead (1997), Estimates of the effective elastic thickness of the continental lithosphere from Bouguer and free air gravity anomalies, J. Geophys. Res. 102, B12, 27523-27552, DOI: 10.1029/97JB02481.
Peréz-Gussinyé, M., A.R. Lowry, and A.B. Watts (2007), Effective elastic thickness of South America and its implications for intercontinental deformation, Geochem. Geophys. Geosys. 8, 5, 1-22, DOI: 10.1029/2006GC001511.
Sharifi, M.A., M. Nikkhoo, and M. Abbaszadeh (2009), A new approach for evaluation of global geopotential models; case study: Iran, J. Space Earth Phys. 36, 4, 2011.
Swain, C.J., and J.F. Kirby (2003), The effect of ‘noise’ on estimates of the elastic thickness of the continental lithosphere by the coherence method, Geophys. Res. Lett. 30, 11, 1574, DOI: 10.1029/2003GL017070.
Talebian, M., and J. Jackson (2002), Offset on the Main Recent Fault of NW Iran and implications for the late Cenozoic tectonics of the Arabia–Eurasia collision zone, Geophys. J. Int. 150, 2, 422-439, DOI: 10.1046/j.1365-246X.2002.01711.x.
Tassara, A., C. Swain, R. Hackney, and J. Kirby (2007), Elastic thickness structure of South America estimated using wavelets and satellite-derived gravity data, Earth. Planet. Sci. Lett. 253, 1-2, 17-36, DOI: 10.1016/j.epsl.2006.10.008.
Tchalenko, J.S., and J. Braud (1974), Seismicity and structure of the Zagros (Iran): The main recent fault between 33 and 35 degrees N, Philos. Trans. Roy. Soc. Lond. A 277, 1262, 1-25, DOI: 10.1098/rsta.1974.0044.
Turcotte, D., and G. Schubert (1982), Geodynamics, John Wiley and Sons, Inc., New York.
Watts, A.B. (2001), Isostasy and Flexure of the Lithosphere, Cambridge University Press, Cambridge.
DOI :
Cytuj : Nowożyński, K. ,Ślęzak, K. ,Kądziałko-Hofmokl, M. ,Szczepański, J. ,Werner, T. ,Jeleńska, M. ,Nejbert, K. ,Shireesha, M. ,Harinarayana, T. ,Romashkova, L. ,Peresan, A. ,Arosio, D. ,Longoni, L. ,Papini, M. ,Zanzi, L. ,Kostecki, A. ,Półchłopek, A. ,Abbaszadeh, M. ,Sharifi, M. ,Nikkhoo, M. , A comparison of the estimated effective elastic thickness of the lithosphere using terrestrial and satellite-derived data in Iran. Acta Geophysica Vol. 61, no. 3/2013
facebook