Journal : Acta Geophysica
Article : A large eddy based lattice-Boltzmann simulation of velocity distribution in an open channel flow with rigid and flexible vegetation

Authors :
Saenger, E.
ETH Zurich Geological Institute, Zurich, Switzerland, erik.saenger@erdw.ethz.ch,
Madonna, C.
ETH Zurich Geological Institute, Zurich, Switzerland,
Almqvist, B.
ETH Zurich Geological Institute, Zurich, Switzerland,
Montahaei, M.
Institute of Geophysics, University of Tehran, Tehran, Iran, mmontaha@ut.ac.ir,
Oskooi, B.
Institute of Geophysics, University of Tehran, Tehran, Iran, boskooi@ut.ac.ir,
Pal, P.
Department of Applied Mathematics, Indian School of Mines, Dhanbad, India, pcpal_ism@yahoo.co.in,
Mandal, D.
Department of Applied Mathematics, Indian School of Mines, Dhanbad, India, dinbandhumandal@gmail.com,
Tsapanos, T.
Aristotle University of Thessaloniki, School of Geology, Geophysical Laboratory, Thessaloniki, Greece, tsapanos@geo.auth.gr,
Bayrak, Y.
Karadeniz Technical University, Department of Geophysics, Trabzon, Turkey, bayrak@ktu.edu.tr,
Cinar, H.
Karadeniz Technical University, Department of Geophysics, Trabzon, Turkey, cinar@ktu.edu.tr,
Koravos, G.
Aristotle University of Thessaloniki, School of Geology, Geophysical Laboratory, Thessaloniki, Greece, gkoravos@sch.gr,
Bayrak, E.
Karadeniz Technical University, Department of Geophysics, Trabzon, Turkey, bayrak@ktu.edu.tr,
Marzec, P.
AGH University of Science and Technology, Faculty of Geology, Geophysics, and Environment Protection, Kraków, Poland, marzec@agh.edu.pl,
Niepsuj, M.
AGH University of Science and Technology, Faculty of Geology, Geophysics, and Environment Protection, Kraków, Poland, magdalena.niepsuj@gmail.com,
Bała, M.
AGH University of Science and Technology, Faculty of Geology, Geophysics, and Environment Protection, Kraków, Poland, bala@geol.agh.edu.pl,
Pietsch, K.
AGH University of Science and Technology, Faculty of Geology, Geophysics, and Environment Protection, Kraków, Poland, pietsch@agh.edu.pl,
Xiao, L.
Key Laboratory of Geo-detection (China University of Geosciences), Ministry of Education, Beijing, China, xiaoliang@cugb.edu.cn,
Liu, X.-P.
Geological Exploration and Development Research Institute Sichuan-Changqing Drilling and Exploration Engineering Co., Chengdu, China,
Zou, C.-C.
Key Laboratory of Geo-detection (China University of Geosciences), Ministry of Education, Beijing, China,
Hu, X.-X.
Geological Exploration and Development Research Institute Sichuan-Changqing Drilling and Exploration Engineering Co., Chengdu, China,
Mao, Z. Q.
State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum, Beijing, China,
Shi, Y.-J.
Research Institute of Exploration and Development, Changqing Oilfield, PetroChina, Xi’an, China,
Guo, H.-P.
Research Institute of Exploration and Development, Changqing Oilfield, PetroChina, Xi’an, China,
Li, G.-R.
Research Institute of Exploration and Development, Changqing Oilfield, PetroChina, Xi’an, China,
Alam, K.
Geophysics Division, Geological Survey of Pakistan, Lahore, Pakistan, khurshaidalam@yahoo.com,
Ahmad, N.
Institute of Geology, University of the Punjab, Lahore, Pakistan, envrnet@brain.net.pk,
Shaban, A.
Conseil National des Recherches Scientifiques, Beirut, Lebanon,
Telesca, L.
Consiglio Nazionale delle Ricerche, Istituto di Metodologie per l’Analisi Ambientale Tito, Italy, luciano.telesca@imaa.cnr.it,
Darwich, T.
Conseil National des Recherches Scientifiques, Beirut, Lebanon,
Amacha, N.
Litani River Authority, Beirut, Lebanon,
Gac, J.
Faculty of Chemical and Process Engineering, Warsaw University of Technology, Warszawa Poland, J.Gac@ichip.pw.edu.pl,
Abstract : The large eddy simulation method, based on a lattice-Boltzmann algorithm, was used to compute the vertical velocity profile in an open channel flow with submerged and emerged vegetation. The numerical method is characterized by the relatively short time of computation and low complexity. On the other hand, it allows a more realistic description of the vegetation properties relative to the methods commonly used in 1-D numerical models. For the proper conditions, the method developed in this work gives results similar to other numerical methods. These results are also in good agreement with the experimental data presented in other papers.

Keywords : symulacja wielkowirowa, symulacje numeryczne, otwarty przepływ kanału, lattice-Boltzmann model, large eddy simulation, numerical simulations, open channel flow,
Publishing house : Instytut Geofizyki PAN
Publication date : 2014
Number : Vol. 62, no. 1
Page : 180 – 198

Bibliography
: 1.Bhatnagar, P.L., E.P. Gross, and M. Krook (1954), A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems, Phys. Rev. 94, 3, 511-525, DOI: 10.1103/PhysRev.94.511.
2.Chen, S., and G.D. Doolen (1998), Lattice Boltzmann method for fluid flows, Ann. Rev. Fluid Mech. 30, 329-364, DOI: 10.1146/annurev.fluid.30.1.329.
3.Defina, A., and A.Ch. Bixio (2005), Mean flow and turbulence in vegetated open channel flow, Water Resour. Res. 41, 7, W07006, 1-12, DOI: 10.1029/2004 WR003475.
4.Eagleson, P.S. (1970), Dynamical Hydrology, McGraw-Hill, New York. Fernandino, M., K. Beronov, and T. Ytrehus (2009), Large eddy simulation of turbulent open duct flow using a lattice Boltzmann approach, Math. Comput. Simulat. 79, 5, 1520-1526, DOI: 10.1016/j.matcom.2008.07.001.
5.Gac, J.M. (2011), Numerical modeling of the water velocity profiles in open channel flow with submerged rigid stems by use of lattice Boltzmann method, Sci. Rev. Eng. Env. Sci. 54, 294-303 (in Polish).
6.Gac, J.M., and L. Gradoń (2011), A two-dimensional modeling of binary coalescence time using the two-color lattice-Boltzmann method, J. Aerosol Sci. 42, 5, 355-363, DOI: 10.1016/j.jaerosci.2011.02.004.
7.Huai, W.X., Y.H. Zeng, Z.G. Xu, and Z.H. Yang (2009), Three-layer model for vertical velocity distribution in open channel flow with submerged rigid vegetation, Adv. Water Resour. 32, 4, 487-492, DOI: 10.1016/j.advwatres. 2008.11.014.
8.Jiménez-Hornero, F.J., J.V. Giráldez, A.M. Laguna, S.J. Bennett, and C.V. Alonso (2007), Modelling the effects of emergent vegetation on an open-channel flow using a lattice model, Int. J. Numer. Method. Fluid 55, 7, 655-672, DOI: 10.1002/fld.1488.
9.Koch, E.W., and G. Gust (1999), Water flow in tide- and wave-dominated beds of the seagrass Thalassia testudinum, Mar. Ecol. Prog. Ser. 184, 63-72, DOI: 10.3354/meps184063.
10.Kubrak, E., J. Kubrak, and P.M. Rowiński (2008), Vertical velocity distributions through and above submerged, flexible vegetation, Hydrolog. Sci. J. 53, 4, 905-920, DOI: 10.1623/hysj.53.4.905.
11.Kubrak, E., J. Kubrak, and P.M. Rowiński (2012), Influence of a method of evaluation of the curvature of flexible vegetation elements on vertical distributions of flow velocities, Acta Geophys. 60, 4, 1098-1119, DOI: 10.2478/s11600-011-0077-2.
12.Landau, L.D., and E.M. Lifshitz (1980), Statistical Physics, Elsevier Butterworth-Heinemann, Oxford.
13.Lei, C., L. Cheng, and K. Kavanagh (1999), Re-examination of the effect of a plane boundary on force and vortex shedding of a circular cylinder, J. Wind Eng. Ind. Aerod. 80, 3, 263-286, DOI: 10.1016/S0167-6105(98)00204-9.
14.López, F., and M.H. García (2001), Mean flow and turbulence structure of openchannel flow through non-emergent vegetation, J. Hydraul. Eng. 127, 5, 392-402, DOI: 10.1061/(ASCE)0733-9429(2001)127:5(392).
15.Mayer, G., J. Páles, and G. Házi (2007), Large eddy simulation of subchannels using the lattice Boltzmann method, Ann. Nucl. Energy 34, 1-2, 140-149, DOI: 10.1016/j.anucene.2006.10.002.
16.Nepf, H.M. (1999), Drag, turbulence, and diffusion in flow through emergent vegetation, Water Resour. Res. 35, 2, 479-489, DOI: 10.1029/1998WR900069.
17.Nepf, H., and M. Ghisalberti (2008), Flow and transport in channels with submerged vegetation, Acta Geophys. 56, 3, 753-777, DOI: 10.2478/s11600-008-0017-y.
18.Nezu, I., and H. Nakagawa (1993), Turbulence in Open-Channel Flows, Balkema, Rotterdam.
19.Palau, G.P., T. Stoesser, A. Rummel, and W. Rodi (2007), Turbulent shallow flow through emergent vegetation. In: Proc. 5th Int. Conf. on Ecohydraulics, 4-7 December 2007, Tempe, USA.
20.Psihogios, J., M.E. Kainourgiakis, A.G. Yiotis, A.Th. Papaioannou, and A.K. Stubos (2007), A lattice Boltzmann study of non-Newtonian flow in digitally reconstructed porous domains, Transp. Porous Med. 70, 2, 279-292, DOI: 10.1007/s11242-007-9099-2.
21.Reis, T., and T.N. Phillips (2007), Lattice Boltzmann model for simulating immiscible two-phase flows, J. Phys. A 40, 14, 4033-4053, DOI: 10.1088/1751-8113/40/14/018.
22.Righetti, M. (2008), Flow analysis in a channel with flexible vegetation using double- averaging method, Acta Geophys. 56, 3, 801-823, DOI: 10.2478/s11600-008-0032-z.
23.Righetti, M., and A. Armanini (2002), Flow resistance in open channel flows with sparsely distributed bushes, J. Hydrol. 269, 1-2, 55-64, DOI: 10.1016/S0022-1694(02)00194-4.
24.Shimizu, Y., and T. Tsujimoto (1994), Numerical analysis of turbulent open-channel flow over a vegetation layer using a k–ε turbulence model, J. Hydrosci. Hydraul. Eng. 11, 2, 57-67.
25.Smagorinsky, J. (1963), General circulation experiments with the primitive equations, Mon. Weather Rev. 91, 3, 99-164, DOI: 10.1175/1520-0493(1963) 091<0099:GCEWTP>2.3.CO;2.
26.Stephan, U., and D. Gutknecht (2002), Hydraulic resistance of submerged flexible vegetation, J Hydrol. 269, 1-2, 27-43, DOI: 10.1016/S0022-1694(02) 00192-0.
27.Stoesser, T., G.P. Salvador, W. Rodi, and P. Diplas (2009), Large eddy simulation of turbulent flow through submerged vegetation, Transp. Porous Med. 78, 3, 347-365, DOI: 10.1007/s11242-009-9371-8.
28.Sukhodolov, A., and T. Sukhodolova (2006), Evolution of mixing layers in turbulent flow over submersed vegetation: Field experiments and measurement study, In: R.M.L. Ferreira, E.C.T.L. Alves, J.G.A.B. Leal, and A.H. Cardoso (eds.), Proc. Int. Conf. on Fluvial Hydraulics “River Flow 2006”, 6-8 September 2006, Lisbon, Portugal, 525-534.
29.Wang, C.-H., and J.-R. Ho (2011), A lattice Boltzmann approach for the non- Newtonian effect in the blood flow, Comput. Math. Appl. 62, 1, 75-86, DOI: 10.1016/j.camwa.2011.04.051.
30.Zhang, X., J.W. Crawford, A.G. Bengough, and I.M. Young (2002), On boundary conditions in the lattice Boltzmann model for advection and anisotropic dispersion equation, Adv. Water Resour. 25, 6, 601-609, DOI: 10.1016/S0309-1708(02)00027-1.
31.Zhou, J.G. (2001), An elastic-collision scheme for lattice Boltzmann methods, Int. J. Mod. Phys. C 12, 3, 387-401, DOI: 10.1142/S0129183101001833.
32.Zhou, J.G. (2002), A lattice Boltzmann model for the shallow water equations, Comput. Method Appl. Mech. Eng. 191, 32, 3527-3539, DOI: 10.1016/S0045-7825(02)00291-8.
33.Zou, Q., and X. He (1997), On pressure and velocity boundary conditions for the lattice Boltzmann BGK model, Phys. Fluids 9, 6, 1591-1598, DOI: 10.1063/1.869307.
DOI :
Qute : Saenger, E. ,Madonna, C. ,Almqvist, B. ,Montahaei, M. ,Oskooi, B. ,Pal, P. ,Mandal, D. ,Tsapanos, T. ,Bayrak, Y. ,Cinar, H. ,Koravos, G. ,Bayrak, E. ,Marzec, P. ,Niepsuj, M. ,Bała, M. ,Pietsch, K. ,Xiao, L. ,Liu, X.-P. ,Zou, C.-C. ,Hu, X.-X. ,Mao, Z. Q. ,Shi, Y.-J. ,Guo, H.-P. ,Li, G.-R. ,Alam, K. ,Ahmad, N. ,Shaban, A. ,Telesca, L. ,Darwich, T. ,Amacha, N. ,Gac, J. ,Gac, J. , A large eddy based lattice-Boltzmann simulation of velocity distribution in an open channel flow with rigid and flexible vegetation. Acta Geophysica Vol. 62, no. 1/2014
facebook