Journal : Acta Geophysica
Article : A review of progress in modelling of induced geoelectric and geomagnetic fields with special regard to induced currents

Authors :
Lilensten, J.
Laboratoire de Planétologie de Grenoble, OSUG-CNRS, Grenoble, France,,
Zuccarello, F.
Dipartimento di Fisica e Astronomia, Universitá di Catania, Catania, Italy,,
Zuccarello, F.
Dipartimento di Fisica e Astronomia, Universitá di Catania, Catania, Italy,,
Lundstedt, H.
Swedish Institute of Space Physics, Lund, Sweden,,
Kretzschmar, M.
LPCE/CNRS, Orléans, France,,
Contarino, L.
INAF Osservatorio Astrofisico di Catania, Catania, Italy,,
Messerotti, M.
INAF-Trieste Astronomical Observatory, Trieste, Italy,,
Desorgher, L.
Physikalisches Institut, University of Bern, Bern, Switzerland,,
Usoskin, I. G.
Sodankylä Geophysical Observatory, University of Oulu, Oulu, Finland,,
Dudok de Wit, T.
LPCE, CNRS and University of Orléans, Orléans, France,,
Valtonen, E.
Space Research Laboratory, Department of Physics, University of Turku, Turku, Finland,,
Spurny, F.
Nuclear Physics Institute, Czech Academy of Sciences, Prague, Czech Republic,,
Daglis, I.
National Observatory of Athens, Institute for Space Applications and Remote Sensing, Athens, Greece,,
Romanova, N.
Institute of the Physics of the Earth, Moscow, Russia,,
Milillo, A.
INAF/IFSI, Istituto di Fisica dello Spazio Interplanetario, Roma, Italy,,
Amata, E.
Istituto di Fisica dello Spazio Interplanetario, INAF, Roma, Italy,,
Watermann, J.
Le Studium and LPCE/CNRS, Orléans, France,,
Thomson, A.
British Geological Survey, Murchsion House, Edinburgh, Great Britain, UK,,
Abstract : The Earth’s lithosphere and mantle respond to Space Weather through time-varying, depth-dependent induced magnetic and electric fields. Understanding the properties of these electromagnetic fields is a key consideration in modelling the hazard to technological systems from Space Weather. In this paper we review current understanding of these fields, in terms of regional and global-scale geology and geophysics. We highlight progress towards integrated European-scale models of geomagnetic and geoelectric fields, specifically for the purposes of modelling geomagnetically induced currents in power grids and pipelines.

Keywords : geoelectric fields, geomagnetic fields,
Publishing house : Instytut Geofizyki PAN
Publication date : 2009
Number : Vol. 57, no. 1
Page : 209 – 219

: Amm, O. (1997), Ionospheric elementary current systems in spherical coordinates and their application, J. Geomagn. Geoelectr. 49, 7, 947-955.
Avdeev, D.B., A.V. Kuvshinov, O.V. Pankratov, and O. Newman (2002), Three dimensional induction logging problems. Part 1: An integral equation solution and model comparisons, Geophysics 67, 2, 413-426
Beamish, D., T.D.G. Clark, E. Clarke, and A.W.P. Thomson (2002), Geomagnetically induced currents in the UK: geomagnetic variations and surface electric fields, J. Atmos. Sol.-Terr. Phys. 64, 1779-1792,
Boteler, D.H. (2001), Assessment of geomagnetic hazard to power systems in Canada, Nat. Hazards 23, 2/3, 101-120,
Boteler, D., and R.J. Pirjola (1998), The complex-image method for calculating the magnetic and electric fields produced at the surface of the Earth by the auroral electrojet, Geophys. J. Int. 132, 31-40,
Engels, M., T. Korja, and the BEAR Working Group (2002), Multisheet modeling of the electrical conductivity structure in the Fennoscandian Shield, Earth Planets Space 54, 559-573.
Everett, M.E., S. Constable, and C.G. Constable (2003), Effects of near-surface conductance on global satellite induction responses, Geophys. J. Int. 153, 1, 277-286,
Ferguson, I.J., J.A. Craven, R.D. Kurtz, D.C. Boerner, R.C. Bailey, X. Wu, M.R. Orellana, J. Spratt, G. Wennberg, and A. Norton (2005), Geoelectric response of Archean lithosphere in the western Superior Province, central Canada, Phys. Earth Planet. Int. 150, 123-143,
Fernberg, P.A., C. Samson, D.H. Boteler, L. Trichtchenko, and P. Larocca (2007), Earth conductivity structures and their effects on geomagnetic induction in pipelines, Ann. Geophys. 25, 207-218.
Gleisner, H., and H. Lundstedt (2001a), A neural network-based local model for prediction of geomagnetic disturbances, J. Geophys. Res. 106, 8425-8434
Gleisner, H., and H. Lundstedt (2001b), Auroral electrojet predictions with dynamic neural networks, J. Geophys. Res. 106, 24541-24550,
Haak, V. (1985), Anomalies of the electrical conductivity in the Earth's crust and upper Mantle. In: K. Fuchs and H. Soffel (eds.), Geophysics of the Solid Earth, the Moon and the Planets, Landolt-Börnstein, Group V: Geophysics, vol. 2b, 397-436, Springer-Verlag, Berlin,
Hjelt, S.E. (1988), Regional EM studies in the 80's, Surv. Geophys. 9, 349-387.
Korja, T. (2007), How is the European lithosphere imaged by magnetotellurics? Surv. Geophys. 28, 2-3, 239-272,
Korja, T., M. Engels, A.A. Zhamaletdinov, A.A. Kovtun, N.A. Palshin, M.Y. Smirnov, A.D. Tokarev, V.E. Asming, L.L. Vanyan, I.L. Vardaniants, and the BEAR Working Group (2002), Crustal conductivity in Fennoscandia -a compilation of a database on crustal conductance in the Fennoscandian Shield, Earth Planets Space 54, 535-558.
Kuvshinov, A. (2007), Global 3-D EM induction in the solid Earth and the oceans. In: V. Spichak (ed.), Electromagnetic Sounding of the Earth's Interior, 4-24, Elsevier, Amsterdam.
Kuvshinov, A., and N. Olsen (2006), A global model of mantle conductivity derived from 5 years of CHAMP, Orsted and SAC-C magnetic data, Geophys. Res. Lett. 33, L18301,
Kuvshinov, A., T. Sabaka, and N. Olsen (2006), 3-D electromagnetic induction studies using the Swarm constellation: Mapping conductivity anomalies in the Earth's mantle, Earth Planets Space 58, 417-427.
Laske, G., and G. Masters (1997), A global digital map of sediment thickness, EOS Trans. AGU, Fall Meeting Suppl. 78, F483.
Lehtinen, M., and R. Pirjola (1985), Currents produced in earthed conductor networks by geomagnetically induced currents, Ann. Geophys. 3, 4, 479-484.
McKay, A.J., and K.A. Whaler (2006), The electric field in northern England and southern Scotland: implications for geomagnetically induced currents, Geophys. J. Int. 167, 2, 613-625,
Olsen, N., and A. Kuvshinov (2004), Modelling the ocean effect of geomagnetic storms, Earth Planets Space 56, 525-530.
Pulkkinen, A., and M. Engels (2005), The role of 3D geomagnetic induction in the determination of the ionospheric currents from ground-based data, Ann. Geophys. 23, 909-917.
Pulkkinen, A., and A. Viljanen (2007), The complex spatiotemporal dynamics of ionospheric currents. In: J. Lilensten (ed.), Space Weather: Research Towards Application in Europe, Series: Astrophysics and Space Science Library, vol. 344, 332 pp.
Pulkkinen, A., R. Pirjola, D. Boteler, A. Viljanen, and I. Yegorov (2001), Modelling of space weather effects on pipelines, J. Appl. Geophys. 48, 4, 233-256,
Pulkkinen, A., O. Amm, A. Viljanen, and the BEAR Working Group (2003a), Ionospheric equivalent current distributions determined with the method of spherical elementary current systems, J. Geophys. Res. 108, A2, 1053,
Pulkkinen, A., O. Amm, A. Viljanen, and the BEAR Working Group (2003b), Separation of the geomagnetic variation field into parts of external and internal parts using the spherical elecmenatry currents system method, Earth Planets Space 55, 117-129.
Pulkkinen, A., S. Lindahl, A. Viljanen, and P. Pirjola (2005), Geomagnetic storm of 29-31 October 2003: Geomagnetically induced currents and their relation to problems in the Swedish high-voltage power transmission system, Space Weather 3, 8, S08C03,
Pulkkinen, A., A. Viljanen, and P. Pirjola (2007), Determination of ground conductivity and system parameters for optimal modeling of geomagnetically induced current flow in technological systems, Earth Planets Space 99, 999-1006.
Purucker, M.E. (2007), Magnetic anomaly map of the world, EOS Trans. AGU 88, 25, 263,
Schwarz, G. (1990), Electrical conductivity of the Earth's crust and upper mantle, Surv. Geophys. 11, 2-3, 133-161
Semenov, V.Yu., and W. Jóźwiak (1999), Model of the geoelectrical structure of the mid- and lower mantle in the Europe-Asia region, Geophys. J. Int. 138, 2, 549-552,
Thomson, A.W.P., A.J. McKay, E. Clarke, and S.J. Reay (2005), Surface electric fields and geomagnetically induced currents in the Scottish Power grid during the 30 October 2003 geomagnetic storm, Space Weather 3, 11,
Vanhamaki, H., O. Amm, and A. Viljanen (2003), One-dimensional upward continuation of the ground magnetic field disturbance using spherical elementary current systems, Earth Planets Space 55, 613-625.
Viljanen, A., O. Amm, and R. Pirjola (1999), Modelling geomagnetically induced currents during different ionospheric situations, J. Geophys. Res. 104, 28,059-28,071,
Viljanen, A., A. Pulkkinen, O. Amm, R. Pirjola, T. Korja and BEAR Working Group (2004), Fast computation of the geoelectric field using the method of elementary current systems and planar Earth models, Ann. Geophys. 22, 101-113.
Vozár, J., V.Y. Semenov, A.V. Kuvshinov, and C. Manoj (2006), Updating the map of Earth's surface conductance, EOS Trans. AGU 87, 33,
Weigel, R.S., A.J. Klimas, and D. Vassiliadis (2003), Solar wind coupling to and predictability of ground magnetic fields and their time derivatives, J. Geophys.Res. 108, 1298,
Qute : Lilensten, J. ,Zuccarello, F. ,Zuccarello, F. ,Lundstedt, H. ,Kretzschmar, M. ,Contarino, L. ,Messerotti, M. ,Desorgher, L. ,Usoskin, I. G. ,Dudok de Wit, T. ,Valtonen, E. ,Spurny, F. ,Daglis, I. ,Romanova, N. ,Milillo, A. ,Amata, E. ,Watermann, J. ,Thomson, A. ,Thomson, A. , A review of progress in modelling of induced geoelectric and geomagnetic fields with special regard to induced currents. Acta Geophysica Vol. 57, no. 1/2009