Journal : Acta Geologica Polonica
Article : A revised inoceramid biozonation for the Upper Cretaceous based on high-resolution carbon isotope stratigraphy in northwestern Hokkaido, Japan

Authors :
Klapper, G.
Department of Earth and Planetary Sciences, Northwestern University, Evanston, IL 60208, USA., g-klapper@northwestern.edu,
Vodrážková, S.
GeoZentrum Nordbayern, Fachgruppe Paläoumwelt, Friedrich-Alexander-Universität Erlangen-Nürnberg, Loewenichstr. 28, Erlangen, Germany and Czech Geological Survey, P.O.B. 85, 118 21 Prague 1, Czech Republic. , stana.vodrazkova@seznam.cz,
Kędzior, A.
Faculty of Geology, University of Warsaw, Zwirki i Wigury 93, PL-02-089 Warsaw, Poland.Polish Academy of Sciences, Institute of Geological Sciences, Krakow Research Centre, Senacka 1 str; PL-31-002, Krakow, Poland, ndkedzio@cyf-kr.edu.pl,
Popa, M. E.
University of Bucharest, Faculty of Geology and Geophysics, Laboratory of Palaeontology, 1, N. Balcescu Ave., R-010041, Bucharest, Romania, mihai@mepopa.com,
Lakova, I.
Geological Institute, Bulgarian Academy of Sciences, Acad. G. Bonchev St., Bl. 24, 1113 Sofia, Bulgaria, lakova@geology.bas.bg,
Petrova, S.
Geological Institute, Bulgarian Academy of Sciences, Acad. G. Bonchev St., Bl. 24, 1113 Sofia, Bulgaria, silviya_p@geology.bas.bg,
Bąk, K.
Institute of Geography, Pedagogical University of Cracow, Podchor¹¿ych St. 2, PL-30-084 Krakow, Poland, sgbak@cyf-kr.edu.pl,
Bąk, M.
Faculty of Geology, Geophysics and Environmental Protection, AGH University of Science and Technology, 30 Mickiewicza Av., PL-30-059 Krakow, Poland. , martabak@agh.edu.pl,
Hayakawa, T.
Department of Earth Sciences, Resources and Environmental Engineering, Graduate School of Creative Science and Engineering, Waseda University, Nishi-waseda 1-6-1, Shinjuku-ku, Tokyo 169-8050, Japan, Present address: TS Network Co., Ltd., Asakusabashi 4-17-7, Taito-ku, Tokyo 111-0053, Japan, hanamizuki@y.asagi.waseda.jp,
Hirano, H.
Department of Earth Sciences, School of Education, Waseda University, Nishi-waseda 1-6-1, Shinjukuku, Tokyo 169-8050, Japan, hhirano@waseda.jp,
Abstract : Biostratigraphic correlations of inoceramid bivalves between the North Pacific and Euramerican provinces have been difficult because the inoceramid biostratigraphy of the Japanese strata has been based on endemic species of the northwest Pacific. In this study, carbon stable isotope fluctuations of terrestrial organic matter are assembled for the Upper Cretaceous Yezo Group in the Haboro and Obira areas, Hokkaido, Japan, in order to revise the chronology of the inoceramid biozonation in Japan. The carbon isotope curves are correlated with those of marine carbonates in English and German sections with the aid of age-diagnostic taxa. According to the correlations of the carbon isotope curves, 11 isotope events are recognised in the sections studied. As a result of these correlations, the chronology of the inoceramid biozones of the Northwest Pacific has been considerably revised. The revised inoceramid biozones suggest that the timing of the origination and extinction of the inoceramids in the North Pacific biotic province is different from the stage/substage boundaries defined by inoceramids, as used in Europe and North America.

Keywords : stratygrafia izotopowa węgla, górna kreda, Hokkaido, Japonia, Carbon Isotope Stratigraphy, inoceramid biozones, Yezo Group, Upper Cretaceous, Hokkaido, Japan,
Publishing house : Faculty of Geology of the University of Warsaw
Publication date : 2013
Number : Vol. 63, no. 2
Page : 239 – 263

Bibliography
: 1. Ando, H. 2003. Stratigraphic correlation of Upper Cretaceous to Paleocene forearc basin sediments in Northeast Japan: Cyclic sedimentation and basin evolution. Journal of Asian Earth Sciences, 21, 921–935.
2. Ando, A. and Kakegawa, T. 2007. Carbon isotope record of terrestrial organic matter and occurrence of planktonic foraminifera from the Albian Stage of Hokkaido, Japan: ocean-atmosphere δ13C trends and chronostratigraphic implications. Palaios, 22, 417–432.
3. Ando, A., Kakegawa, T., Takashima, R. and Saito, T. 2002. New perspective on Aptian carbon isotope stratigraphy: Data from δ13C records of terrestrial organic matter. Geology, 30, 227–230.
4. Ando, A., Kakegawa, T., Takashima, R. and Saito, T. 2003. Stratigraphic carbon isotope fluctuations of detrital woody materials during the Aptian Stage in Hokkaido, Japan: Comprehensive δ13C data form four sections of the Ashibetsu area. Journal of Asian Earth Sciences, 21, 835–847.
5. Asai, A. and Hirano, H. 1990. Stratigraphy of the Upper Cretaceous in the Obira area, northwestern Hokkaido. Gakujutsu Kenkyu, School of Education, Waseda University, Series Biology and Geology, 39, 37–50.
6. Bengtson, P. 1996. The Turonian stage and substage boundaries. Bulletin de l’Institut Royal des Sciences Naturelles de Belgique, Science de la Terre, 66(Supplement), 69–79.
7. Dhondt, A.V. 1992. Cretaceous inoceramid biogeography: review. Palaeogeography, Palaeoclimatology, Palaeoecology, 92, 217–232.
8. Diebold, F., Bengtson, P., Lees, J. and Walaszczyk, I. 2010. ammonite, inoceramid and nannofossil biostratigraphy across the Turonian–Coniacian boundary in the Aquitaine and Vocontian basins (France) and diego Basin (Madagascar). 8th International Symposium Cephalopods – Present and Past, Dijon, France, august 30th to September 3rd, 2010, abstract Volume.
9. Erbacher, J., Thurow, J. and Littke, R. 1996. Evolution patterns of radiolarian and organic matter variations: A new approach to identify sea-level changes in mid-Cretaceous pelagic environments. Geology, 24, 499–502.
10. Funaki, H. and Hirano, H. 2004. Cretaceous stratigraphy in the northeastern part of the Obira area, Hokkaido, Japan. Bulletin of the Mikasa City Museum 8, 17–35. In Japanese with English abstract
11. Gale. A.S. 1996. Turonian correlation and sequence stratigraphy of the Chalk in southern England. In: S.P. Hesselbo and D.N. Parkinson (Eds), Sequence Stratigraphy in British Geology. Geological Society of London, Special Publication, 103, 177–195.
12. Gale, A.S., Hancock, J.M., Kennedy, W.J., Petrizzo, M.R., Lees, J.A., Walaszczyk, I. and Wray, D.S. 2008. An integrated study (geochemistry, stable oxygen and carbon isotopes, nannofossils, planktonic foraminifera, inoceramid bivalves, ammonites and crinoids) of the Waxahachie Dam Spillway section, north Texas: a possible boundary stratotype for the base of the Campanian Stage. Cretaceous Research, 29, 131–167.
13. Hancock, J.M. and Gale, A.S. 1996. The Campanian Stage. Bulletin de l’Institut Royal des Sciences Naturelles de Belgique, Science de la Terre, 66 (Supplement), 103–109.
14. Hasegawa, T. 1992. Positive excursion of isotopic ratio of organic carbon near the Cenomanian/Turonian boundary in the Upper Cretaceous Yezo Group. Fossils (Palaeontological Society of Japan), 53, 33–37. In Japanese
15. Hasegawa, T. 1997. Cenomanian-Turonian carbon isotope events recorded in terrestrial organic matter from northern Japan. Palaeogeography, Palaeoclimatology, Palaeoecology, 130, 251–273.
16. Hasegawa, T. and Hatsugai, T. 2000. Carbon-isotope stratigraphy and its chronostratigraphic significance for the Cretaceous Yezo Group, Kotanbetsu area, Hokkaido, Japan. Paleontological Research, 4, 95–106.
17. Hasegawa, T., Pratt, L.M., Maeda, H., Shigeta, Y., Okamoto, T., Kase, T. and Uemura, K. 2003. Upper Cretaceous stable carbon isotope stratigraphy of terrestrial organic matter from Sakhalin, Russian Far East: a proxy for the isotopic composition of paleoatmospheric CO2. Palaeogeography, Palaeoclimatology, Palaeoecology, 189, 97–115.
18. Hasegawa, T. and Saito, T. 1993. Global synchroneity of a positive carbon isotope excursion at the Cenomanian/Turonian boundary: Validation by calcareous microfossil biostratigraphy of the Yezo Group, Hokkaido, Japan. Island Arc, 3, 181–191.
19. Hirano, H. and Fukuju, T. 1997. Lower Cretaceous oceanic anoxic event in the Lower Yezo Group, Hokkaido, Japan. Journal of the Geological Society of the Philippines, 52, 173–182.
20. Hirano, H., Toshimitsu, S., Honda, B. and Hayakawa, T. 2011, Cretaceous biostratigraphy-Efforts toward integration. In: Kondo, M., Iwai, M., Murayama, M. and Nara, M. (Eds), Abstracts with Programs, the 160th Regular Meeting. The Palaeontological Society of Japan, p. 7. Kochi.
21. Hunt, J.M. 1996. Petroleum Geochemistry and Geology, pp. 1–743. 2ed ed. W.H. Freeman Company; New York.
22. Iba, Y. and Sano, S. 2007. Mid-Cretaceous step-wise demise of the carbonate platform biota in the Northwest Pacific and establishment of the North Pacific biotic province. Palaeogeography, Palaeoclimatology, Palaeoecology, 245, 462–482.
23. Igi, S., Tanaka, K., Hata, M. and Saito, H. 1958. Explanatory text of the geological map of Japan, scale 1:50000, Horokanai, pp. 1–64. Geological Survey of Japan; Kawasaki. In Japanese with English abstract
24. Jarvis, I., Gale, A.S., Jenkyns, H.C. and Pearce, M.A. 2006. Secular variation in Late Cretaceous carbon isotopes: a new δ13C carbonate reference curve for the CenomanianCampanian (99.6-70.6 Ma). Geological Magazine, 143, 561–608.
25. Jarvis, I., Mabrouk, A., Moody, R.T.J. and De Cabrera, S.C. 2002. Late Cretaceous (Campanian) carbon isotope events, sea-level change and correlation of the Tethyan and Boreal realms. Palaeogeography, Palaeoclimatology, Palaeoecology, 188, 215–248.
26. Jenkyns, H.C., Gale, A.S. and Corfeld, R.M. 1994. Carbonand oxygen-isotope stratigraphy of the English Chalk and Italian Scaglia and its palaeoclimatic significance. Geological Magazine, 131, 1–34.
27. Kauffman, E.G., Kennedy, W.J. and Wood, C.J. 1996. The Coniacian stage and substage boundaries. Bulletin de l’Institut Royal des Sciences Naturelles de Belgique, Science de la Terre, 66 (Supplement), 81–94.
28. Lamolda, M.A. and Hancock, J.M. 1996. The Santonian Stage and substages. Bulletin de l’Institut Royal des Sciences Naturelles de Belgique, Science de la Terre, 66 (Supplement), 95–102.
29. Matsumoto, T. 1959. Zonation of the Upper Cretaceous in Japan. Memoirs of the Faculty of Science, Kyushu University, Series D, Geology, 9, 55–93.
30. Matsumoto, T., Muramoto, K., Hirano, H. and Takahashi, T. 1981. Some Coniacian ammonites from Hokkaido (Studies of the Cretaceous ammonites from Hokkaido-XL). Transactions and Proceedings of the Palaeontological Society of Japan, New Series, 121, 51–73.
31. Matsumoto, T. and Noda, M. 1983. Restudy of Inoceramus incertus Jimbo with special reference to its biostratigraphic implications. Proceedings of Japanese Academy of Science B, 59, 109–112.
32. Moriya, K. and Hirano, H. 2001. Cretaceous stratigraphy in the Chikubetsu area, Hokkaido. Journal of the Geological Society of Japan, 107, 199–214. In Japanese with English abstract
33. Moriya, K., Nishi, H. and Tanabe, K. 2001. Age calibration of megafossil biochronology based on Early Campanian planktonic foraminifera from Hokkaido, Japan. Paleontological Research, 5, 277–282.
34. Nagao, T. and Matsumoto, T. 1939. A monograph of the Cretaceous Inoceramus of Japan. Part. 1. Journal of the Faculty of Science, Hokkaido Imperial University Series 4, 4, 241–299.
35. Nagao, T. and Matsumoto, T. 1940. A monograph of the Cretaceous Inoceramus of Japan. Part. 2. Journal of the Faculty of Science, Hokkaido Imperial University Series 4, 6, 1–64.
36. Nishi, H., Takashima, R., Hatsugai, T., Saito, T., Moriya, K., Ennyu, A. and Sakai, T. 2003. Planktonic foraminiferal zonation in the Cretaceous Yezo Group, Central Hokkaido, Japan. Journal of Asian Earth Sciences, 21, 867–886.
37. Noda, M. 1984. Notes on Mytiloides incertus (Cretaceous Bibalvia) from the Upper Turonian of the Pombets area, central Hokkaido. Transactions and Proceedings of the Palaeontological Society of Japan, New Series, 136, 455–473.
38. Noda, M. and Matsumoto, T. 1998. Palaeontology and stratigraphy of the inoceramid species from the mid-Turonian through upper Middle Coniacian in Japan. Acta Geologica Polonica, 48, 435–482.
39. Noda, M. and Toshimitsu, S. 1990. Notes on a Cretaceous bivalve Inoceramus (Platyceramus) mantelli De Mercey from Japan. Transactions and Proceedings of the Palaeontological Society of Japan, New Series, 158, 485–512.
40. Noda, M. and Uchida, S. 1995. Inoceramus (Platyceramus) szaszisp. nov. (Bivalvia) from the Coniacian (Cretaceous) of Hokkaido, Japan.Transactions and Proceedings of the Palaeontological Society of Japan, New Series, 178, 142–153.
41. Ogg, J.G., Agterberg, F.P. and Gradstein, F.M. 2004. The Cretaceous Period. In: F.M. Gradstein, J.G. Ogg and A.G. Smith (Eds), A Geologic Time Scale 2004, 344–383.
42. Oizumi, M., Kurihara, K., Funaki, H. and Hirano, H. 2005. Upper Cretaceous stratigraphy in the Obira area, Hokkaido, Japan. Bulletin of the Mikasa City Museum, 9, 11–26. In Japanese with English abstract
43. Okada, H. 1982. Geologic evolution of Hokkaido, Japan: an example of collision orogenesis. Proceedings of Geologist’s Association, 93, 201–212.
44. Okamoto, T., Matsunaga, T. and Okada, M. 2003. Restudy of the Upper Cretaceous stratigraphy in the Haboro area, northwestern Hokkaido. Journal of the Geological Society of Japan, 109, 363–382.
45. Scholle, P.A. and Arthur, M.A. 1980. Carbon Isotope Fluctuation in Cretaceous Pelagic Limestones: Potential Stratigraphic and Petroleum Exploration Tool. The American Association of Petroleum Geologists Bullein, 64, 67–87.
46. Sekine, H., Takagi, A. and Hirano, H. 1985. Biostratigraphical study of the Upper Cretaceous of the north-east part of the Obira area, Hokkaido. Fossils (Palaeontological Society of Japan), 38, 1–15. In Japanese with English abstract
47. Stoll, H.M. and Schrag, D.P. 2000. High-resolution stable isotope records from the Upper Cretaceous rocks of Italy and Spain: Glacial episodes in a greenhouse planet? Geological Society of America Bulletin 112, 308–319.
48. Tröger, K.-A. 1967. Zur Paläontologie, Biostratigraphie und faziellen Ausbildung der unteren Oberkreide (Cenoman bis Turon). Teil 1. Paläontologie und Biostratigraphie der Inoceramen des Cenomans bis Turons Mitteleuropas. Abhandlungen des Staatlichen Museums für Mineralogie und Geologie zu Dresden, 12, 13–208. Dresden.
49. Takahashi, A. 2005. Diversity changes in Cretaceous inoceramid bivalves of Japan. Paleontological Research, 9, 217–232.
50. Takahashi, A. and Mitsugi, T. 2002. Fossils from the channelfill deposits of the Upper Cretaceous Saku Formation in the Teshionakagawa area, Hokkaido, Japan, and their significance. Journal of the Geological Society of Japan, 108, 281–190. In Japanese with English abstract
51. Takashima, R., Kawabe, F., Nishi, H., Moriya, K., Wani, R. and Ando, H. 2004. Geology and stratigraphy of forearc basin sediments in Hokkaido, Japan: Cretaceous environmental events on the north-west Pacific margin. Cretaceous Research, 25, 365–390.
52. Takashima, R., Nishi, H., Yamanaka, T., Hayashi, K., Waseda, A., Obuse, A., Tomosugi, T., Deguchi, N. and Mochizuki, S. 2010. High-resolution terrestrial carbon isotope and planktic foraminiferal records of the Upper Cenomanian to the Lower Campanian in the Northwesrt Pacific. Earth and Planetary Science Letters, 289, 570–582.
53. Tanabe, K., Hirano, H., Matsumoto, T. and Miyata, Y. 1977. Stratigraphy of the Upper Cretaceous deposits in the Obira area, northwestern Hokkaido. Memoirs of the Faculty of Science, Kyushu University, Series D, Geology, 12, 181–202. In Japanese with English abstract
54. Tanaka, K. 1963. A study on the Cretaceous sedimentation in Hokkaido, Japan. Report of Geological Survey of Japan, 197, 1–122.
55. Toshimitsu, S. 1985. Biostratigraphy and depositional facies of the Cretaceous in the upper reaches of the Haboro River, Hokkaido. Journal of the Geological Society of Japan, 91, 599–618. In Japanese with English abstract
56. Toshimitsu, S. 1988. Biostratigraphy of the Upper Cretaceous Santonian Stage in northwestern Hokkaido. Memoirs of the Faculty of Science, Kyushu University, Series D, Geology, 26, 125–192.
57. Toshimitsu, S., Hasegawa, T. and Tsuchiya, K. 2007. Coniacian-Santonian Stratigraphy in Japan: a review. Cretaceous Research, 28, 128–131.
58. Toshimitsu, S., Maiya, S., Inoue, Y. and Takahashi, T. 1998. Integrated megafossil-foraminiferal biostratigraphy of the Santonian to lower Campanian (Upper Cretaceous) succession in northwestern Hokkaido, Japan. Cretaceous Research, 19, 69–85.
59. Toshimitsu, S., Matsumoto, T., Noda, M., Nishida, T. and Maiya, S. 1995. Towards an integrated mega-, micro-, and magneto-stratigraphy of the Upper Cretaceous in Japan. Journal of the Geological Society of Japan, 101, 19–29. In Japanese with English abstract
60. Tsuchiya, K., Hasegawa, T. and Pratt, L.M. 2003. Stratigraphic relationship between diagnostic carbon isotope profiles and inoceramid biozones from the Yezo Group, Hokkaido, Japan. Journal of the Geological Society of Japan, 109, 30–40. In Japanese with English abstract
61. Tsushima, K., Tanaka, K., Matsuno, K. and Yamaguchi, S. 1958. Explanatory text of the geological map of Japan, scale 1:50000, Tappu, pp. 1–74. Geological Survey of Japan; Kawasaki. In Japanese with English abstract
62. Uramoto, G., Abe, Y. and Hirano, H. 2009. Carbon isotope fluctuations of terrestrial organic matter for the Upper Cretaceous (Cenomanian-Santonian) in the Obira area of Hokkaido, Japan. Geological Magazine, 146, 761–774.
63. Uramoto, G., Fujita, T., Takahashi, A. and Hirano, H. 2007. Cenomanian (Upper Cretaceous) carbon isotope stratigraphy of terrestrial organic matter for the Yezo Group, Hokkaido, Japan. Island Arc, 16, 465–478.
64. Voigt, S. 2000. Cenomanian-Turonian composite δ13C curve for Western and Central Europe: the role of organic and inorganic carbon fluxes. Palaeogeography, Palaeoclimatology, Palaeoecology, 160, 91–104.
65. Voigt, S., Friedrich, O, Norris, R.D. and Schönfeld, J. 2010. Campanian-Maastrichtian carbon isotope stratigraphy: shelf-ocean correlation between the European shelf sea and the tropical Pacific Ocean. Newsletters on Stratigraphy, 44, 57–72.
66. Voigt, S and Hilbrecht, H. 1997. Late Cretaceous carbon isotope stratigraphy in Europe: correlation and relations with sea level and sediment stability. Palaeogeography, Palaeoclimatology, Palaeoecology, 134, 39–59.
67. Walaszczyk, I. and Wood, C.J. 1998. Inoceramids and biostratigraphy at the Turonian/Coniacian boundary; based on the Salzgitter-Salder Quarry, Lower Saxony, Germany, and the Słupia Nadbrzeżna section, Central Poland. Acta Geologica Polonica, 48, 395–434.
68. Walaszczyk, I. and Cobban, W.A. 2000. Inoceramid faunas and biostratigraphy of the Upper Turonian-Lower Coniacian of the Western Interior of the United States. Special Papers in Palaeontology, 64, 1–118.
69. Walaszczyk, I. and Cobban, W.A. 2006. Palaeontology and biostratigraphy of the Middle-Upper Coniacian and Santonian inoceramids of the US Western Interior. Acta Geologica Polonica, 56, 241–348.
70. Wani, R. and Hirano, H. 2000. Upper Cretaceous biostratigraphy in the Kotanbetsu area, northwestern Hokkaido. Journal of the Geological Society of Japan, 106, 171–188. In Japanese with English abstract
71. Whiticar, M.J. 1996. Stable isotope geochemistry of coals, humic kerogens and related natural gas. International Journal of Coal Geology, 32, 191–215.
72. Wiese, F. and Kaplan, U. 2001. The potential of the Lengerich section (Munster Basin, northern Germany) as a possible candidate Global boundary Stratotype Section and Point (GSSP) for the Middle/Upper Turonian boundary. Cretaceous Research, 22, 549–563.
73. Wood, C.J., Ernst, G. and Rasemann, G. 1984. The TuronianConiacian stage boundary in Lower Saxony (Germany) and adjacent areas: the Salzgitter-Salder Quarry as a proposed international standard section. Bulletin of the Geological Society of Denmark, 33, 225–238.
74. Wood, C.J., Walaszczyk, I., Mortimore, R.N. and Woods, M.A. 2004. New observations on the inoceramid biostratigraphy of the higher part of the Upper Turonian and the Turonian – Coniacian boundary transition in Poland, Germany and the UK. Acta Geologica Polonica, 54, 541–549.
75. Yamaguchi, S. and Matsuno, K. 1963. Explanatory text of the geological map of Japan, scale 1:50000, Sankei, pp. 1–50. Geological Survey of Japan; Kawasaki. In Japanese with English abstract
DOI :
Qute : Klapper, G. ,Vodrážková, S. ,Kędzior, A. ,Popa, M. E. ,Lakova, I. ,Petrova, S. ,Bąk, K. ,Bąk, M. ,Hayakawa, T. ,Hirano, H. ,Hirano, H. , A revised inoceramid biozonation for the Upper Cretaceous based on high-resolution carbon isotope stratigraphy in northwestern Hokkaido, Japan. Acta Geologica Polonica Vol. 63, no. 2/2013
facebook