Journal : Acta Geophysica
Article : A statistical damage model with implications for precursory seismicity

Authors :
Vallianatos, F.
Technological Educational Institute of Crete, Laboratory of Geophysics and Seismology, Crete, Greece, fvallian@chania.teicrete.gr,
Tsallis, C.
Centro Brasileiro de Pesquisas Fisicas and National Institute of Science and Technology for Complex Systems, Rio de Janeiro, Brazil, tsallis@cbpf.br,
Sotolongo-Costa, O.
Catedra de Sistemas Complejos “Henri Poincare”, Universidad de La Habana, osotolongo@fisica.uh.cu,
Celikoglu, A.
Department of Physics, Faculty of Science, Ege University, Izmir, Turkey, ahmet.celikoglu@ege.edu.tr,
Abe, S.
Department of Physical Engineering, Mie University, Mie, Japan, suabe@sf6.so-net.ne.jp,
Bunde, A.
Institut fur Theoretische Physik, Giessen, Germany, Armin.Bunde@uni-giessen.de,
Donner, R.
Research Domain IV – Transdisciplinary Concepts & Methods, Potsdam Institute for Climate Impact Research, Potsdam, Germany, reik.donner@pik-potsdam.de,
Molchan, G.
International Institute of Earthquake Prediction Theory and Mathematical Geophysics, Russian Academy of Sciences, Moscow, Russia, molchan@mitp.ru,
Lee, Y.-T.
Graduate Institute of Geophysics, National Central University, Jhongli, Taiwan, shine2530@gmail.com,
Abstract : Acoustic emissions prior to rupture indicate precursory damage. Laboratory studies of frictional sliding on model faults feature accelerating rates of acoustic emissions prior to rupture. Precursory seismic emissions are not generally observed prior to earthquakes. To address the problem of precursory damage, we consider failure in a fiber-bundle model. We observe a clearly defined nucleation phase followed by a catastrophic rupture. The fibers are hypothesized to represent asperities on a fault. Two limiting behaviors are the equal load sharing p = 0 (stress from a failed fiber is transferred equally to all surviving fibers) and the local load sharing p = 1 (stress from a failed fiber is transferred to adjacent fibers). We show that precursory damage in the nucleation phase is greatly reduced in the local-load sharing limit. The local transfer of stress from an asperity concentrates nucleation, restricting precursory acoustic emissions (seismic activity).

Keywords : earthquake precursors, acoustic emission, fiber-bundle model, rupture, nucleation,
Publishing house : Instytut Geofizyki PAN
Publication date : 2012
Number : Vol. 60, no. 3
Page : 638 – 663

Bibliography
: Abramowitz, M., and I.A. Stegun (eds.) (1972), Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th ed., Dover Publications Inc., New York, 260 pp.
Alava, M.J., P.K.V.V. Nukala, and S. Zapperi (2006), Statistical models of fracture, Adv. Phys. 55, 3-4, 349-476, DOI: 10.1080/00018730300741518.
Agnew, D.C., and L.M. Jones (1991), Prediction probabilities from foreshocks, J. Geophys. Res. 96, B7, 11959-11971, DOI: 10.1029/91JB00191.
Bakun, W.H., B. Aagaard, B. Dost, W.L. Ellsworth, J.L. Hardebeck, R.A. Harris, C. Ji, M.J.S. Johnston, J. Langbein, J.J. Lienkaemper, A.J. Michael, J.R. Murray, R.M. Nadeau, P.A. Reasenberg, M.S. Reichle, E.A. Roeloffs, A. Shakal, R.W. Simpson, and F. Waldhauser (2005), Implications for prediction and hazard assessment from the 2004 Parkfield earthquake, Nature 437, 969-974, DOI: 10.1038/nature04067.
Bowman, D.D., G. Ouillon, C.G. Sammis, A. Sornette, and D. Sornette (1998), An observational test of the critical earthquake concept, J. Geophys. Res. 103, B10, 24359-24372, DOI: 10.1029/98JB00792.
Carlson, J.M., and J.S. Langer (1989), Mechanical model of an earthquake fault, Phys. Rev. A 40, 11, 6470-6484, DOI: 10.1103/PhysRevA.40.6470.
Ciliberto, S., A. Guarino, and R. Scorretti (2001), The effect of disorder on the fracture nucleation process, Physica D 158, 1-4, 83-104, DOI: 10.1016/S0167-2789(01)00306-2.
Coleman, B.D. (1958), Statistics and time dependence of mechanical breakdown in fibers, J. Appl. Phys. 29, 6, 968-983, DOI: 10.1063/1.1723343.
Daniels, H.E. (1945), The statistical theory of the strength of bundles of threads, Proc. Roy. Soc. A 183, 995, 405-435, DOI: 10.1098/rspa.1945.0011.
Garcimartin, A., A. Guarino, L. Bellon, and S. Ciliberto (1997), Statistical properties of fracture precursors, Phys. Rev. Lett. 79, 17, 3202-3205, DOI; 10.1103/PhysRevLett.79.3202.
Guarino, A., A. Garcimartin, and S. Ciliberto (1998), An experimental test of the critical behavior of fracture precursors, Eur. Phys. J. B 6, 13-24, DOI: 10.1007/s100510050521.
Guarino, A., S. Ciliberto, and A. Garcimartin (1999), Failure time and microcrack nucleation, Europhys. Lett. 47, 4, 456-461, DOI: 10.1209/epl/i1999-00409-9.
Guarino, A., S. Ciliberto, A. Garcimartin, M. Zei, and R. Scorretti (2002), Failure time and critical behaviour of fracture precursors in heterogeneous materials, Eur. Phys. J. B 26, 2, 141-151, DOI: 10.1140/epjb/e20020075.
Helmstetter, A., and D. Sornette (2003), Foreshocks explained by cascades of triggered seismicity, J. Geophys. Res. 108, B10, 2457-2466, DOI: 10.1029/2003JB002409.
Hemmer, P.C., and A. Hansen (1992), The distribution of simultaneous fiber failures in fiber bundles, J. Appl. Mech. 59, 4, 909-914, DOI: 10.1115/1.2894060.
Krajcinovic, D. (1996), Damage Mechanics, 2nd ed., Elsevier, Amsterdam, 761 pp.
Kun, F., S. Zapperi, and H.J. Herrmann (2000), Damage in fiber bundle models, Eur. Phys. J. B 17, 2, 269-279, DOI: 10.1007/PL00011084.
Marone, C. (1998), Laboratory-derived friction laws and their application to seismic faulting, Ann. Rev. Earth Planet. Sci. 26, 643-696, DOI: 10.1146/annurev.earth.26.1.643.
Meeker, W.Q., and L.A. Escobar (1998), Statistical Methods for Reliability Data, John Wiley and Sons, New York, 680 pp.
Phoenix, S.L., and W.I. Newman (2009), Time-dependent fiber bundles with local load sharing. II. General Weibull fibers, Phys. Rev. E 80, 6, 066115, DOI: 10.1103/PhysRevE.80.066115.
Pradhan, S., A. Hansen, and B.K. Chakrabarti (2010), Failure processes in elastic fiber bundles, Rev. Mod. Phys. 82, 1, 499-555, DOI: 10.1103/RevModPhys.82.499.
Pride, S.R., and R. Toussaint (2002), Thermodynamics of fiber bundles, Physica A 312, 1-2, 159-171, DOI: 10.1016/S0378-4371(02)00816-6.
Reasenberg, P.A. (1999), Foreshock occurrence before large earthquakes, J. Geophys. Res. 104, B3, 4755-4768, DOI: 10.1029/1998JB900089.
Savage, M.K., and D.M. dePolo (1993), Foreshock probabilities in the western Great-Basin eastern Sierra Nevada, Bull. Seismol. Soc. Am. 83, 6, 1910-1938.
Scorretti, R., S. Ciliberto, and A. Guarino (2001), Disorder enhances the effects of thermal noise in the fiber bundle model, Europhys. Lett. 55, 5, 626-632, DOI: 10.1209/epl/i2001-00462-x.
Turcotte, D.L. (1997), Fractals and Chaos in Geology and Geophysics, 2nd ed., Cambridge University Press, Cambridge, 398 pp.
Turcotte, D.L. (1999), Self-organized criticality, Rep. Prog. Phys. 62, 10, 1377-1429, DOI: 10.1088/0034-4885/62/10/201.
Turcotte, D.L., S.G. Abaimov, R. Shcherbakov, and J.B. Rundle (2007), Nonlinear dynamics of nature hazards. In: A.A. Tsonis and J.B. Elsner (eds.), Nonlinear Dynamics in Geosciences, Springer, New York, 557-580, DOI: 10.1007/978-0-387-34918-3_30.
Weeks, J., D. Lockner, and J. Byerlee (1978), Change in b-values during movement on cut surfaces in granite, Bull. Seismol. Soc. Am. 68, 2, 333-341.
Weibull, W. (1951), A statistical distribution function of wide applicability, J. Appl. Mech. 18, 293-297.
DOI :
Qute : Vallianatos, F. ,Tsallis, C. ,Sotolongo-Costa, O. ,Celikoglu, A. ,Abe, S. ,Bunde, A. ,Donner, R. ,Molchan, G. ,Lee, Y.-T. ,Lee, Y.-T. , A statistical damage model with implications for precursory seismicity. Acta Geophysica Vol. 60, no. 3/2012
facebook