A study of the interaction among mining-induced seismic events in the Legnica-Głogów Copper District, Poland

Czasopismo : Acta Geophysica
Tytuł artykułu : A study of the interaction among mining-induced seismic events in the Legnica-Głogów Copper District, Poland

Autorzy :
Sobotka, J.
University of Wrocław, Institute of Geological Sciences, Department of Structural Geology, Wrocław, Poland, jerzysob@ing.uni.wroc.pl,
Sedighi, M.
K.N. Toosi University of Technology, Faculty of Geodesy and Geomatics Engineering, Tehran, Iran, sedighi@ncc.org.ir,
Rezaei, K.
LMU University, Munich, Germany, khalil.rezaei@yahoo.com,
Narayan, J.
Dept. of Earthquake Engineering, Indian Institute of Technology, Roorkee, India, jaypnfeq@iitr.ernet.in,
Rozmarynowska, A.
Institute of Geophysics, Polish Academy of Sciences, Warszawa, Poland, rozmaryn@igf.edu.pl,
Gnyp, A.
Carpathian Branch, Subbotin Institute of Geophysics, National Academy of Sciences of Ukraine, Lviv, Ukraine, gnyp@cb-igph.lviv.ua,
Wiejacz, P.
Institute of Geophysics, Polish Academy of Sciences, Warszawa, Poland, pwiejacz@igf.edu.pl,
Karakostas, V.
Geophysics Department, Aristotle University of Thessaloniki, Thessaloniki, Greece, vkarak@geo.auth.gr,
Mukhopadhyay, B.
Central Headquarters, Geological Survey of India, Kolkata, India, basabmukhopadhyay@yahoo.com,
Tezcan, S.
Bogazici University, Bebek, Istanbul, Turkey, tezokan@superonline.com,
Orlecka-Sikora, B.
Faculty of Geology Geophysics and Environmental Protection, AGH University of Science and Technology, Kraków, Poland, orlecka@geol.agh.edu.pl,
Abstrakty : We applied the Coulomb stress transfer technique to investigate interactions among seismic events induced by mining works in the Rudna mine in the Legnica-Glogów Copper District in Poland. We considered events with energy greater than 10⁵ J from the period 1993-1999. We examined the influence of the cumulative static stress changes (ΔCFF) due to previous events on the generation of subsequent ones. The results indicate that in many cases strong mining tremors produce changes in the state of stress of a sufficient magnitude to influence subsequent events. The location of over 60% of events is consistent with stress-enhanced areas where the values of ΔCFF were above 0.01 MPa. For most of the events located inside areas of a calculated negative ΔCFF, their modelled rupture zone was partially located inside stress enhanced area, providing thus additional evidence for possible triggering at the nucleation point.

Słowa kluczowe : Legnica-Głogów Copper District, Rudna mine, induced seismicity, Coulomb stress changes,
Wydawnictwo : Instytut Geofizyki PAN
Rocznik : 2009
Numer : Vol. 57, no. 2
Strony : 413 – 434
Bibliografia : 1. Aki, K., and P. Richards (1980), Quantitative Seismology: Theory and Methods, W.H. Freeman, San Francisco.
2. Andrews, D. (1986), Objective determination of source parameters and similarity of earthquakes of different size. In: S. Das, J. Boatwright and C.H. Scholz (eds.), Earthquakes Source Mechanics, 259-267, AGU, Washington, D.C.
3. Brune, J.N. (1970), Tectonic stress and spectra of seismic shear waves from earthquakes, J. Geophys. Res. 75, 4997-5009, DOI: 10.1029/JB075i026p04997.
4. Brune, J.N. (1971), Correction, J. Geophys. Res. 76, 5002, DOI: 10.1029/JB076i020p05002.
5. Chinnery, M.A. (1961), The deformation of the ground around a surface fault, Bull. Seism. Soc. Am. 51, 355-372.
6. Chinnery, M.A. (1963), The state of stress changes that accompany strike-slip faulting, Bull. Seism. Soc. Am. 53, 921-932.
7. Das, S., and C.H. Scholz (1981), Theory of time-dependent rupture in the Earth, J. Geophys. Res. 86, B7, 6039-6051, DOI: 10.1029/JB086iB07p06039.
8. Deng, J., and L.R. Sykes (1997), Evolution of the stress field in southern California and triggering of moderate-size earthquakes: A 200-year perspective, J. Geophys. Res. 102, B5, 9859-9886, DOI: 10.1029/96JB03897.
9. Domański, B., and S.J. Gibowicz (2008), Comparison of source parameters estimated in the frequency and time domains for seismic events at Rudna copper mine, Poland, Acta Geophys. 56, 324-343, DOI: 10.2478/s11600-008-0014-1.
10. Domański, B., S.J. Gibowicz, and P. Wiejacz (2002), Source time function of seismic events at Rudna copper mine, Poland, Pure Appl. Geophys. 159, 131-144, DOI: 10.1007/PL00001247.
11. Fitch, T.J., D.W. McCowan, and M.W. Shields (1980), Estimation of seismic moment tensor from teleseismic body wave data with application to intraplate and mantle earthquakes, J. Geophys. Res. 85, B7, 3817-3828, DOI: 10.1029/JB085iB07p03817.
12. Gibowicz, S.J. (1990), The mechanism of seismic events induced by mining. In: S.J. Gibowicz and S. Lasocki (eds.), Rockburst and Seismicity in Mines, 3-27, A.A. Balkema, Rotterdam.
13. Gibowicz, S.J. (1997), An anatomy of a seismic sequence in a deep gold mine, Pure Appl. Geophys. 150, 393-414, DOI: 10.1007/s000240050084.
14. Gibowicz, S.J. (2006), Seismic doublets and multiplets at the Polish coal and copper mines, Acta Geophys. 54, 142-157, DOI 10.2478/s11600-006-0014-y.
15. Gibowicz, S.J., and A. Kijko (1994), An Introduction to Mining Seismology, Academic Press, San Diego.
16. Gibowicz, S.J., and S. Lasocki (2001), Seismicity induced by mining: Ten years later, Advances in Geophysics 44, 39-181.
17. Harris, R.A. (1998), Introduction to special session: Stress triggers, stress shadows, and implications for seismic hazard, J. Geophys. Res. 103, B10, 24347-24358, DOI: 10.1029/98JB01576.
18. Harris, R.A., and R.W. Simpson (1996), In the shadow of 1857: The effect of the great Ft. Tejon earthquakes in southern California, Geophys. Res. Lett. 23, 229-232, DOI: 10.1029/96GL00015.
19. Haskell, N.A. (1953), The dispersion of surface waves in multilayered media, Bull. Seismol. Soc. Am., 43, 17-34.
20. Hudnut, K.W., Y. Bock, M. Cline, P. Fang, Y. Feng, J. Freymueller, X. Ge, W.K. Gross, D. Jackson, M. Kim, N.E. King, J. Langbein, S.C. Larsen, M. Lisowski, Z.K. Shen, J. Svarc, and J. Zhang (1994), Co-seismic displacements of the 1992 Landers earthquake, Bull. Seismol. Soc. Am. 84, 625-645.
21. Idziak, A., G. Sagan, and W.M. Zuberek (1991), The analysis of energy distribution of seismic events from the Upper Silesian Coal Basin, Publs. Inst. Geophys. Pol. Acad. Sc. M-15 (235), 163-182 (in Polish).
22. Jaeger, J.C., and N.G.W. Cook (1979), Fundamentals of Rock Mechanics, 3rd ed., Chapman and Hall, London.
23. Kijko, A. (1997), Keynote lecture: Seismic hazard assessment in mines. In: S.J. Gibowicz and S. Lasocki (eds.), Rockbursts and Seismicity in Mines, 247-256, A.A. Balkema, Rotterdam.
24. Kijko, A., M.M. Dessokey, E. Głowacka, and M. Kazimierczyk (1982), Periodicity of strong mining tremors in the Lubin copper mine, Acta Geophys. Pol. 30, 221-230.
25. Kijko, A., B. Drzęźla, and A. Mendecki (1985), Why the extremal seismic events distribution have the bimodal character? Acta Montana 71, 225-244 (in Polish).
26. Kijko, A., B. Drzeźla, and T. Stankiewicz, (1987), Bimodal character of extreme seismic events in Polish mines, Acta Geophys. Pol. 35, 157-166.
27. King, G.C.P., and M. Cocco (2001), Fault interaction by elastic stress changes: New clues from earthquake sequences, Adv. Geophys. 44, 1-38.
28. King, G.C.P., R.S. Stein, and J. Lin (1994), Static stress changes and the triggering of earthquakes, Bull. Seismol. Soc. Am. 84, 935-953.
29. Kłeczek, Z. (2007), Control of rock-mass bursts in Polish Copper Mines LGCD. In: Warsztaty Górnicze 2007 “Zagrożenia naturalne w górnictwie”, Ślesin k. Konina, 4-6 czerwca 2007. Bezp. Pr. Ochr. Śr. Gór. 2007 nr 6, 25-27 (in Polish).
30. Lasocki, S. (1992a), Non-Poissonian structure of mining induced seismicity, Acta Montana 84, 51-58.
31. Lasocki, S. (1992b), Weibull distribution for time intervals between mining tremors, Publs. Inst. Geophys. Pol. Acad. Sc.. M-16 (245), 241-260.
32. Lasocki, S. (2001), Quantitative evidences of complexity of magnitude distribution in mining-induced seismicity: Implications for hazard evaluation. In: G. van Aswegen, R.J. Durrheim and W.D. Ortlepp (eds.), The Fifth Int. Symp. on Rockbursts and Seismicity in Mines (RaSiM 5) 'Dynamic rock mass response to mining', 543-550, South African Institute of Mining and Metallurgy, Johannesburg.
33. Lasocki, S. (2005), Probabilistic analysis of seismic hazard posed by mining induced events. In: Y. Potvin and M. Hudyma (eds.), The Sixth Int. Symp. on Rockbursts and Seismicity in Mines 'Controlling on Seismic Risk' ACG, Perth, 151-156.
34. Leśniak, A., and G. Pszczoła (2008), Combined mine tremors source location and error evaluation in the Lubin Copper Mine (Poland), Tectonophysics 456, 16-27, DOI: 10.1016/j.tecto.2007.04.012.
35. Lin, J., and R.S. Stein (2004), Stress triggering in thrust and subduction earthquakes, and stress interaction between the southern San Andreas and nearby thrust and strike-slip faults, J. Geophys. Res. 109, B02303, DOI: 10.1029/2003JB002607.
36. Madariaga, R. (1976), Dynamics of an expanding circular fault, Bull. Seismol. Soc. Am. 66, 639-666.
37. Marcak, H. (1985), Geophysical models of development of destruction process in the rock mass prior to rockburst, Publs. Inst. Geophys. Pol. Acad. Sc. M-6 (176), 149-174 (in Polish).
38. Marsan, D., Ch.J. Bean, S. Steacy, and J. McCloskey (1999), Spatio-temporal analysis of stress diffusion in mining-induced seismicity system, Geophys. Res. Lett. 26, 3697-3700, DOI: 10.1029/1999GL010829.
39. McGarr, A., and D.W. Simpson (1997), Keynote lecture: A broad look at induced seismicity. In: S.J. Gibowicz and S. Lasocki (eds.), Rockbursts and Seismicity in Mines, 385-396, A.A. Balkema, Rotterdam.
40. Okada, Y. (1985), Surface deformation due to shear and tensile faults in a halfspace, Bull. Seism. Soc. Am. 75, 1135-1154.
41. Okada, Y. (1992), Internal deformation due to shear and tensile faults in a halfspace. Bull. Seism. Soc. Am. 82, 1018-1040.
42. Orlecka-Sikora, B., and S. Lasocki (2002), Clustered structure of seismicity from the Legnica-Głogów copper district, Publs. Inst. Geophys. Pol. Acad. Sc. M-24 (340), 105-119 (in Polish).
43. Papadimitriou, E.E., and L.R. Sykes (2001), Evolution of the stress field in the northern Aegean Sea (Greece), Geophys. J. Int. 146, 747-759, DOI: 10.1046/j.0956-540x.2001.01486.x.
44. Parsons, T., R.S. Stein, R.W. Simpson, and P.A. Reasenberg (1999), Stress sensitivity of fault seismicity: A comparison between limited-offset oblique and major strike-slip faults, J. Geophys. Res. 104, B9, 20183-20202, DOI: 10.1029/ 1999JB900056.
45. Piestrzyński, A. (1996), Monograph of KGHM Polska Miedź SA, CBPM “Cuprum”, Wrocław (in Polish).
46. Reasenberg, P.A., and R.W. Simpson (1992), Response of regional seismicity to the static stress change produced by the Loma Prieta earthquake, Science 255, 1687-1690.
47. Scholz, C.H. (1990), The Mechanics of Earthquakes and Faulting, Cambridge University Press, Cambridge.
48. Snoke, J.A. (1987), Stable determination of (Brune) stress drops, Bull. Seismol. Soc. Am. 77, 530-538.
49. Steacy, S., J. Gomberg, and M. Cocco (2005), Introduction to special section: Stress transfer, earthquake triggering and time-dependent seismic hazard, J. Geophys. Res. 110, DOI: 10.1029/2005JB003692.
50. Stein, R.S., and M. Lisowski (1983), The 1979 Homestead Valley earthquake sequence, California: Control of aftershocks and postseismic deformation, J. Geophys. Res. 88, B8, 6477-6490, DOI: 10.1029/JB088iB08p06477.
51. Stein, R.S., G.L.P. King, and J. Lin (1992), Change in failure stress on the southern San Andreas fault system caused by the 1992 magnitude = 7.4 Landers earthquake, Science 258, 1328-1332, DOI: 10.1126/science.258.5086.1328.
52. Steketee, J.A. (1958a), On Volterra's dislocations in a semi-infinite elastic medium, Can. J. Phys. 36, 193-205.
53. Steketee, J.A. (1958b), Some geophysical applications of the elasticity theory of dislocations, Can. J. Phys. 36, 1168-1198.
54. Toda, S., R.S. Stein, K. Richards-Dinger, and S. Bozkurt (2005), Forecasting the evolution of seismicity in southern California: Animations built on earthquake stress transfer, J. Geophys. Res. B05S16, DOI: 10.1029/ 2004JB003415.
55. Trifu, C.-I., T.I. Urbancic, and R.P. Young (1993), Non-similar frequency-magnitude distribution for M < 1 seismicity, Geophys. Res. Lett. 20, 6, 427-430, DOI: 10.1029/93GL00426.
56. Wiejacz, P. (1991), Investigation of focal mechanisms of mine tremors by the moment tensor inversion, Ph.D. Thesis, Inst. Geophys. Pol. Acad. Sc, Warsaw, Poland.
Cytuj : Sobotka, J. ,Sedighi, M. ,Rezaei, K. ,Narayan, J. ,Rozmarynowska, A. ,Gnyp, A. ,Wiejacz, P. ,Karakostas, V. ,Mukhopadhyay, B. ,Tezcan, S. ,Orlecka-Sikora, B. , A study of the interaction among mining-induced seismic events in the Legnica-Głogów Copper District, Poland. Acta Geophysica Vol. 57, no. 2/2009