Journal : Acta Geophysica
Article : Aftershocks in modern perspectives: Complex earthquake network, aging, and non-Markovianity

Authors :
Vallianatos, F.
Technological Educational Institute of Crete, Laboratory of Geophysics and Seismology, Crete, Greece,,
Tsallis, C.
Centro Brasileiro de Pesquisas Fisicas and National Institute of Science and Technology for Complex Systems, Rio de Janeiro, Brazil,,
Sotolongo-Costa, O.
Catedra de Sistemas Complejos “Henri Poincare”, Universidad de La Habana,,
Celikoglu, A.
Department of Physics, Faculty of Science, Ege University, Izmir, Turkey,,
Abe, S.
Department of Physical Engineering, Mie University, Mie, Japan,,
Abstract : The phenomenon of aftershocks is studied in view of science of complexity. In particular, three different concepts are examined: (i) the complex-network representation of seismicity, (ii) the event-event correlations, and (iii) the effects of long-range memory. Regarding (i), it is shown that the clustering coefficient of the complex earthquake network exhibits a peculiar behavior at and after main shocks. Regarding (ii), it is found that aftershocks experience aging, and the associated scaling holds. And regarding (iii), the scaling relation to be satisfied by a class of singular Markovian processes is violated, implying the existence of the longrange memory in processes of aftershocks.

Keywords : aftershocks, complex earthquake networks, aiging, glassy dynamics, non-Markovian singular point processes,
Publishing house : Instytut Geofizyki PAN
Publication date : 2012
Number : Vol. 60, no. 3
Page : 547 – 561

: Abe, S., and N. Suzuki (2003), Law for the distance between successive earthquakes, J. Geophys. Res. 108, B2, 2113-2117, DOI: 10.1029/2002JB002220.
Abe, S., and N. Suzuki (2004a), Scale-free network of earthquakes, Europhys. Lett. 65, 4, 581-586, DOI: 10.1209/epl/i2003-10108-1.
Abe, S., and N. Suzuki (2004b), Aging and scaling of earthquake aftershocks, Physica A 332, 533-538, DOI: 10.1016/j.physa.2003.10.002.
Abe, S., and N. Suzuki (2004c), Small-world structure of earthquake network, Physica A 337, 1-2, 357-362, DOI: 10.1016/j.physa.2004.01.059.
Abe, S., and N. Suzuki (2005a), Scale-free statistics of time interval between successive earthquakes, Physica A 350, 2-4, 588-596, DOI: 10.1016/j.physa.2004.10.040.
Abe, S., and N. Suzuki (2005b), Scale-invariant statistics of period in directed earthquake network, Eur. Phys. J. B 44, 1, 115-117, DOI: 10.1140/epjb/e2005-00106-7.
Abe, S., and N. Suzuki (2006a), Complex-network description of seismicity, Nonlin. Processes Geophys. 13, 2, 145-150, DOI: 10.5194/npg-13-145-2006.
Abe, S., and N. Suzuki (2006b), Complex earthquake networks: Hierarchical organization and assortative mixing, Phys. Rev. E 74, 2, 026113, DOI: 10.1103/PhysRevE.74.026113.
Abe, S., and N. Suzuki (2007), Dynamical evolution of clustering in complex network of earthquakes, Eur. Phys. J. B 59, 1, 93-97, DOI: 10.1140/epjb/e2007-00259-3.
Abe, S., and N. Suzuki (2009a), Violation of the scaling relation and non-Markovian nature of earthquake aftershocks, Physica A 388, 9, 1917-1920, DOI: 10.1016/j.physa.2009.01.031.
Abe, S., and N. Suzuki (2009b), Scaling relation for earthquake networks, Physica A 388, 12, 2511-2514, DOI: 10.1016/j.physa.2009.02.022.
Abe, S., and N. Suzuki (2009c), Determination of the scale of coarse graining in earthquake networks, Europhys. Lett. 87, 4, 48008, DOI: 10.1209/0295-5075/87/48008.
Abe, S., D. Pastén, and N. Suzuki (2011), Finite data-size scaling of clustering in earthquake networks, Physica A 390, 7, 1343-1349, DOI: 10.1016/j.physa.2010.11.033.
Albert, R., H. Jeong, and A.-L. Barabási (2000), Error and attack tolerance of complex networks, Nature 406, 378-382, DOI: 10.1038/35019019.
Barabási, A.-L. and R. Albert (1999), Emergence of scaling in random networks, Science 286, 5439, 509-512, DOI: 10.1126/science.286.5439.509.
Bardou, F., J.-P. Bouchaud, A. Aspect, and C. Cohen-Tannoudji (2002), Lévy Statistics and Laser Cooling. How Rare Events Bring Atoms to Rest, Cambridge University Press, Cambridge.
Barndorff-Nielsen, O.E., F.E. Benth, and J.L. Jensen (2000), Markov jump processes with a singularity, Adv. Appl. Probab. 32, 3, 779-799, DOI: 10.1239/aap/1013540244.
Bollobás, B. (2001), Random Graphs, 2nd ed., Cambridge Studies in Advanced Mathematics, Vol. 73, Cambridge University Press, Cambridge.
Corral, Á. (2004), Long-term clustering, scaling, and universality in the temporal occurrence of earthquakes, Phys. Rev. Lett. 92, 10, 108501, DOI: 10.1103/PhysRevLett.92.108501.
Fischer, K.H., and J.A. Hertz (1991), Spin Glasses, Cambridge Studies in Magnetism, Vol. 1, Cambridge University Press, Cambridge.
Goldstein, M.L., S.A. Morris, and G.G. Yen (2004), Problems with fitting to the power-law distribution, Eur. Phys. J. B 41, 2, 255-258, DOI: 10.1140/epjb/e2004-00316-5.
Gutenberg, B. and C.F. Richter (1949), Seismicity of the Earth and Associated Phenomena, Princeton University Press, Princeton.
Newman, M.E.J. (2002), Assortative mixing in networks, Phys. Rev. Lett. 89, 20, 208701, DOI: 10.1103/PhysRevLett.89.208701.
Newman, M.E.J. (2005), Power laws, Pareto distributions and Zipf’s law, Contemp. Phys. 46, 5, 323-351, DOI: 10.1080/00107510500052444.
Omori, F. (1894), On the after-shocks of earthquakes, J. Coll. Sci. Imp. Univ. Tokyo 7, 111-200.
Ravasz, E., and A.-L. Barabási (2003), Hierarchical organization in complex networks, Phys. Rev. E 67, 2, 026112, DOI: 10.1103/PhysRevE.67.026112.
Steeples, D.W., and D.D. Steeples (1996), Far-field aftershocks of the 1906 earthquake, Bull. Seismol. Soc. Am. 86, 4, 921-924.
Utsu, T. (1961), A statistical study on the occurrence of aftershocks, Geophys. Mag. 30, 521-605.
Watts, D.J., and S.H. Strogatz (1998), Collective dynamics of ‘small-world’ networks, Nature 393, 440-442, DOI: 10.1038/30918.
Qute : Vallianatos, F. ,Tsallis, C. ,Sotolongo-Costa, O. ,Celikoglu, A. ,Abe, S. ,Abe, S. , Aftershocks in modern perspectives: Complex earthquake network, aging, and non-Markovianity. Acta Geophysica Vol. 60, no. 3/2012