Biomechanical analysis of the intervertebral disc implant using the finite element method

Czasopismo : Advances in Materials Science
Tytuł artykułu : Biomechanical analysis of the intervertebral disc implant using the finite element method

Autorzy :
Mierzejewska, Ż. A.
Bialystok University of Technology, Faculty of Mechanical Engineering, Department of Materials Science and Biomedical Engineering, ul. Wiejska 45C, 15-351 Bialystok, Poland, a.mierzejewska@doktoranci.pb.edu.pl,
Markowicz, W.
Vilnius Gediminas Technical University, Faculty of Mechanical Engineering, Department of Materials Science and Welding, ul. Basanaviciaus 28, 03224 Vilnius, Lithuania, vladislav.markovic@vgtu.lt,
Czupryński, A.
Silesian University of Technology, Mechanical Engineering Faculty, The Chair of Welding, Konarskiego 18A Street,44-100 Gliwice, Poland, artur.czuprynski@polsl.pl,
Lipiński, T.
University of Warmia and Mazury in Olsztyn, The Faculty of Technical Sciences, Department of Material and Machine Technology, St: Oczapowskiego 11, 10-957 Olsztyn, Poland, tomasz.lipinski@uwm.edu.pl,
Wach, A.
University of Warmia and Mazury in Olsztyn, The Faculty of Technical Sciences, Department of Material and Machine Technology, St: Oczapowskiego 11, 10-957 Olsztyn, Poland,
Detyna, E.
University of Warmia and Mazury in Olsztyn, The Faculty of Technical Sciences, Department of Material and Machine Technology, St: Oczapowskiego 11, 10-957 Olsztyn, Poland,
Rokosz, K.
Koszalin University of Technology, Faculty of Mechanical Engineering, Racławicka 15-17 75-620 Koszalin, Poland, rokosz@tu.koszalin.pl,
Hryniewicz, T.
Koszalin University of Technology, Faculty of Mechanical Engineering, Racławicka 15-17 75-620 Koszalin, Poland,
Dudek, Ł.
Koszalin University of Technology, Faculty of Mechanical Engineering, Racławicka 15-17 75-620 Koszalin, Poland,
Malorny, W.
Hochschule Wismar-University of Applied Sciences Technology, Business and Design, Faculty of Engineering, DE 23966 Wismar, Germany, winfried.malorny@hs-wismar.de,
Fydrych, D.
Gdansk University of Technology, Department of Materials Science and Welding Engineering, Narutowicza 11/12, 80-233 Gdańsk, Poland, darfydry@pg.gda.pl,
Łabanowski, J.
Gdansk University of Technology, Department of Materials Science and Welding Engineering, Narutowicza 11/12, 80-233 Gdańsk, Poland,
Tomków, J.
Gdansk University of Technology, Department of Materials Science and Welding Engineering, Narutowicza 11/12, 80-233 Gdańsk, Poland,
Rogalski, G.
Gdansk University of Technology, Department of Materials Science and Welding Engineering, Narutowicza 11/12, 80-233 Gdańsk, Poland,
Kajzer, W.
Silesian University of Technology, Faculty of Biomedical Engineering, Department of Biomaterials and Medical Devices Engineering, ul. Roosvelta 40, 44-800 Zabrze, Wojciech.Kajzer@polsl.pl,
Kajzer, A.
Silesian University of Technology, Faculty of Biomedical Engineering, Department of Biomaterials and Medical Devices Engineering, ul. Roosvelta 40, 44-800 Zabrze,
Pindycki, I.
Silesian University of Technology, Faculty of Biomedical Engineering, Department of Biomaterials and Medical Devices Engineering, Students’ Scientific Society of Biomedical Engineering ”SYNERGIA”,
Abstrakty : Dysfunctions of the vertebral column belong to a group of civilisation diseases and they affect approximately 80% of population. The underlying cause is modern (sedentary) lifestyle, low locomotive activity of people and frequent motor vehicle and sports accidents. Despite civilisation’s progress, no injury prophylactics or prevention of dysfunctions of the vertebral column have been introduced. The key element influencing function of the vertebral column is the intervertebral disc. It enables multidimensional movements and constitutes a basic connective element between the joints of the vertebral column. It also enables performing basic daily activities. Acting as a “damper”, it cushions vibrations and transmits loads between the vertebrae. One of the diseases affecting the intervertebral disc is discopathy. This is the most common degenerative disease, which can be treated by both conservative and surgical treatment. After removal of the damaged disc, it can be replaced by an adequate implant, which will assume its function. The implant will be expected to restore the vertebral column motor function, as well as to eliminate the pain resulting from compression of the spine caused by the damaged disc. This paper presents a biomechanical analysis using the finite element method for the L2-L3 vertebrae system with natural intervertebral disc, and the L2-L3 – implant of the intervertebral disc system. Two cases of the system vertebrae-implant were analysed which differed in the placement of the artificial disc in the intervertebral space. Within the conducted analysis, the state of displacement, strain and stress of reduced analysed systems and their individual elements was determined. A comparative analysis of the results and calculations was performed, also conclusions and observations were formulated, constituting a starting point for building more advanced calculation models and further analyses of such implants.

Słowa kluczowe : biomaterial, intervertebral disc, biomechanical analysis, finite element method,
Wydawnictwo : Politechnika Gdańska
Rocznik : 2015
Numer : Vol.15, nr 3(45)
Strony : 57 – 66
Bibliografia : 1. Kiwerski J., Kowalski M., Krasuski M.: Schorzenia i urazy kręgosłupa, PZWL, Warszawa (1997).
2. Gaździk T.: Ortopedia i traumatologia. Tom I, Wydanie III uaktualnione i rozszerzone, PZWL, Warszawa (2008).
3. Putza R., Pabsta R.: Sobotta, Atlas Anatomii Człowieka, Tom II Klatka piersiowa, brzuch, miednica, kończyna dolna. Wydanie II Polskie opracowane przez M. Ziółkowskiego, Urban & Partner, Wrocław (1997).
4. Stajgis M.: Urazy kręgosłupa i rdzenia kręgowego, II Zakład Radiologii Ogólnej UM, Kielce (2009), 2-12.
5. Pezowicz C.: Biomechanika Krążka Międzykręgowego, Ocena Przeciążeń oraz Skutki Wprowadzania Implantów, Oficyna Wydawnicza Politechniki Wrocławskiej, Wrocław (2008).
6. Borkowski P.: Biomechanical analysis of artificial lumbar disc, Bio-algorithms and med-systems journal edited by medical college – Jagiellonian University 1 (2005), 143-146.
7. Barczewska M., Maksymowicz W., Beta J.: Artificial discs as a new alternative treatment method for selected patients with cervical or lumbar, Problemy Lekarskie 45 (2006), 7-10.
8. Świeczko-Żurek B., Serbiński W., Szumlański A.: Analisys of the failure of fixator used in bone surgery. Advances in Materials Science, 8, 2 (2008), 84-88.
9. Kajzer W., Kajzer A, Szewczenko J., Marciniak J.: FEM Analysis of Locked Intramedullary Nails Used For Femur Fractures Treatment. Engineering of Biomaterials, 13 (2010), 54-57.
10. Pochrząst M., Basiaga M., Marciniak J, Kaczmarek M.: Biomechanical analysis of limited-contact plate used for osteosynthesis. Acta of Bioengineering and Biomechanics 16, 1, (2014), 99-105. Web of Science
11. Ziębowicz A., Kajzer A., Kajzer W., Marciniak J.: Metatarsal osteotomy using double-threaded screws – biomechanical analysis, Conference on Information Technologies in Biomedicine. Adva ces in soft computing 69. Springer-Verlag, Berlin Heidelberg (2010), 465-472.
12. Kajzer A., Kajzer W., Gzik-Zroska B., Wolański W., Janicka I., Dzielicki J.: Experimental Biomechanical Assessment of Plate Stabilizers for Treatment of Pectus Excavatum Acta of Bioengineering and Biomechanics, 15, 3, (2013), 113-121. Web of Science
13. Basiaga M., Paszenda Z., Szewczenko J., Kaczmarek M.: Numerical and experimental analysis of drills used in osteosynthesis. Acta of Bioengineering and Biomechanics, 13, 4, (2011), 29-36.
14. Kajzer W., Kajzer A, Kaczmarek M., Marciniak J.: FEM analisys of the expandable intramedullary nail. Advances in soft computing, Springer-Verlag 47 (2008), 537-544.
15. www page: http://www.whichmedicaldevice.com/by-manufacturer/234/372/prodisc-l-prosthesis.
16. Gzik M.: Biomechanika Kręgosłupa Człowieka, Wydawnictwo Politechniki Śląskiej, Gliwice (2007).
17. Kurtz S.M.: The UHMWPE Handbook, Ultra-High Molecular Weight Polyethylene in Total Joint Replacement, Elsevier Academic Press (2004), 219-325.
18. Standard ASTM F 75-82 – Standard Specification for Cast Cobalt-Chromium-Molybdenum alloy for Surgical Implant Applications.
19. Tejszerska D., Mańka I.: Modelowanie skrzywień bocznych kręgosłupa człowieka, Wydawnictwo Politechniki Śląskiej, Gliwice (2010), 56-64.
20. Rundell S.A., Isaza J.E., Kurtz S.M.: Biomechanical evaluation of a spherical lumbar interbody device at varying levels of subsidence, SAS Journal 5 (2011), 16-25.
21. Shikinami Y., Kawabe Y., Yasukawa K., Tsuta K., Kotani Y., Abumi K.: A biomimetic artificial intervertebral disc system composed of a cubic three-dimensional fabric. The Spine Journal 10 (2010), 141-152.
22. Haiyun Li, Zheng W.: Intervertebral disc biomechanical analysis using the finite element modeling based on medical images, Medical Imaging a d Telemedicine, Computerized Medical Imaging and Graphics 30 (2006), 363-370.
23. Denozière G., Ku D.N.: Biomechanical comparison between fusion of two vertebrae and implantation of an artificial intervertebral disc, Journal of Biomechanics 39 (2006), 766-775. CrossRef
24. Grauer J.N., Biyani A., Faizan A., Kiapour A., Sairyo K., Ivanov A., Ebraheim N.A., Patel T.Ch., Goel V.K.: Biomechanics of two-level Charité artificial disc placement in comparison to fusion plus single-level disc placement combination, The Spine Journal 6 (2006), 659–666.
25. Wanga W., Zhangb H., Sadeghipoura K., Baran G.: Effect of posterolateral disc replacement on kinematics and stress distribution in the lumbar spine: A finite element study, Medical Engineering & Physics 35 (2013), 357–364.
DOI :
Cytuj : Mierzejewska, Ż. A. ,Markowicz, W. ,Czupryński, A. ,Lipiński, T. ,Wach, A. ,Detyna, E. ,Rokosz, K. ,Hryniewicz, T. ,Dudek, Ł. ,Malorny, W. ,Fydrych, D. ,Łabanowski, J. ,Tomków, J. ,Rogalski, G. ,Kajzer, W. ,Kajzer, A. ,Pindycki, I. , Biomechanical analysis of the intervertebral disc implant using the finite element method. Advances in Materials Science Vol.15, nr 3(45)/2015
facebook