Journal : Acta of Bioengineering and Biomechanics
Article : Biomechanical comparison of a transiliac internal fixator and two iliosacral screws in transforaminal sacral fractures: a finite element analysis

Authors :
Rumian, Ł.
Department of Biomaterials, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Krakow, Poland,
Reczyńska, K.
Department of Biomaterials, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Krakow, Poland,
Wrona, M.
Faculty of Electrical Engineering, Automatics, Computer Science and Biomedical Engineering, AGH University of Science and Technology, Krakow, Poland,
Tiainen, H.
Department of Biomaterials, Institute for Clinical Dentistry, University of Oslo, Oslo, Norway,
Haugen, H. J.
Department of Biomaterials, Institute for Clinical Dentistry, University of Oslo, Oslo, Norway,
Pamuła, E.
Department of Biomaterials, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Krakow, Poland, epamula@agh.edu.pl,
Turek, A.
Centre of Polymer and Carbon Materials, Polish Academy of Sciences, Zabrze, Poland, a.turek75@gmail.com,
Kasperczyk, J.
Centre of Polymer and Carbon Materials, Polish Academy of Sciences, Zabrze, Poland,
Jelonek, K.
Centre of Polymer and Carbon Materials, Polish Academy of Sciences, Zabrze, Poland,
Borecka, A.
Centre of Polymer and Carbon Materials, Polish Academy of Sciences, Zabrze, Poland,
Janeczek, H.
Centre of Polymer and Carbon Materials, Polish Academy of Sciences, Zabrze, Poland,
Libera, M.
Centre of Polymer and Carbon Materials, Polish Academy of Sciences, Zabrze, Poland,
Gruchlik, A.
Centre of Polymer and Carbon Materials, Polish Academy of Sciences, Zabrze, Poland,
Dobrzyński, P.
Centre of Polymer and Carbon Materials, Polish Academy of Sciences, Zabrze, Poland,
Wojda, S.
Faculty of Mechanical Engineering, Białystok University of Technology, Białystok, Poland,
Szoka, B.
Faculty of Mechanical Engineering, Białystok University of Technology, Białystok, Poland,
Sajewicz, E.
Faculty of Mechanical Engineering, Białystok University of Technology, Białystok, Poland, e.sajewicz@pb.edu.pl,
Kiel-Jamrozik, M.
Silesian University of Technology, Faculty of Biomedical Engineering, Department of Biomaterials and Medical Devices Engineering, Zabrze, Poland, marta.kiel-jamrozik@polsl.pl,
Szewczenko, J.
Silesian University of Technology, Faculty of Biomedical Engineering, Department of Biomaterials and Medical Devices Engineering, Zabrze, Poland,
Basiaga, M.
Silesian University of Technology, Faculty of Biomedical Engineering, Department of Biomaterials and Medical Devices Engineering, Zabrze, Poland,
Nowińska, K.
Silesian University of Technology, Faculty of Mining and Geology, Institute of Applied Geology, Gliwice, Poland,
Salasek, M.
Department of Orthopaedics and Traumatology, Faculty of Medicine of Charles University and Faculty Hospital in Plzeň, Czech Republic, martin.salasek@seznam.cz,
Jansova, M.
Department of Mechanics, Faculty of Applied Sciences and New Technologies for Information Society of West Bohemian University in Plzeň, Czech Republic.,
Křen, J.
Department of Mechanics, Faculty of Applied Sciences and New Technologies for Information Society of West Bohemian University in Plzeň, Czech Republic,
Pavelka, T.
Department of Orthopaedics and Traumatology, Faculty of Medicine of Charles University and Faculty Hospital in Plzeň, Czech Republic,
Weisova, D.
Department of Orthopaedics and Traumatology, Faculty of Medicine of Charles University and Faculty Hospital in Plzeň, Czech Republic,
Abstract : Purpose: Vertically unstable sacral transforaminal fractures can be stabilized with a transiliac internal fixator (TIFI) or two iliosacral screws (IS). This study was designed to compare stiffness between TIFI and IS. Methods: Using CT images finite element model of the pelvis was developed. Denis II type fracture was simulated and fixed either with TIFI or two IS. The sacral base was loaded vertically (250–500 N), displacement magnitudes on medial and lateral fracture surface and the maximum bone stress were calculated. The intact pelvis was used as a reference. Stiffness was determined by linear regression of load and displacement, computed stiffness ratio %. The von Mises stress was expressed as % ratio, evaluation of colour mapping was made. Results: The mean stiffness ratio medially in TIFI was 75.22%, in IS 46.54% ( p = 0.00005), laterally in TIFI 57.88%, in IS 44.74% ( p = 0.03996). The von Mises stress ratio of TIFI was 139.27%, of IS 565.35% ( p < 0.00001). Conclusions: Significantly higher stiffness and lower stress were found in TIFI model. TIFI provides a lower risk of over-compression of the fracture line in comparison with IS. TIFI thus exhibits superiority for fixation of transforaminal fractures, particularly with comminutive zone.
Keywords : analiza MES, stabilizator, biomechanika, finite element analysis, transiliac internal fixator, iliosacral screw, pelvic ring, transforaminal fracture,
Publishing house : Oficyna Wydawnicza Politechniki Wrocławskiej
Publication date : 2015
Number : Vol. 17, nr 1
Page : 39 – 49

Bibliography
: 1 BODZAY T., FLÓRIS I., VÁRADI K., Comparison of stability in the operative treatment of pelvic injuries in a finite element model, Arch. Orthop. Trauma Surg., 2011, 131(10), 1427–1433.
2 BODZAY T., SZITA J., MANÓ S., KISS L., JÓNÁS Z., FRENYÓ S., CSERNÁTONY Z., Biomechanical comparison of two stabilization techniques for unstable sacral fractures, J. Orthop. Sci., 2012, 17(5), 574–579.
3 DIENSTKNECHT T., BERNER A., LENICH A., NERLICH M., FUECHTMEIER B., A Minimally invasive stabilizing system for dorsal pelvic ring Injuries, Clin. Orthop. Relat. Res., 2011, 469(11), 3209–3217.
4 DIENSTKNECHT T., BERNER A., LENICH A., ZELLNER J., MUELLER M., NERLICH M., FUECHTMEIER B., Biomechanical analysis of a transiliac internal fixator, Int. Orthop, 2011, 35(12), 1863–1868.
5 DŽUPA V., PAVELKA T., TALLER S. et al., Léčbazlomeninpánve a acetabula, Galén 2013.
6 FÜCHTMEIER B., MAGHSUDI M., NEUMANN C., HENTE R., ROLL C., NERLICH M., The minimally invasive stabilization of the dorsal pelvic ring with the transiliacal internal fixator (TIFI) – surgical technique and first clinical findings, Unfallchirurg, 2004, 107, 42–51.
7 GRAS F., MARINTSCHEV I., WILHARM A., KLOS K., MÜCKLEY T., HOFMANN G.O., 2D-fluoroscopic navigated percutaneous screw fixation of pelvic ring injuries a case series, BMC Musculoskelet. Disord., 2010, 11, 153.
8 HAO T., CHANGWEI Y., QIULIN Z., Treatment of posterior pelvic ring injuries with minimally invasive percutaneous plate osteoSynthes©is, Int. Orthop., 2009, 33, 1435–1439.
9 CHEN B., ZHANG Y., XIAO S., GU P., LIN X., Personalized image-based templates for iliosacral screw insertions: a pilot study, Int. J. Med. Robot., 2012, 8(4), 476–482.
10 CHEN H., WU L., ZHENG R., LIU Y., LI Y., DING Z., Parallel analysis of finite element model controlled trial and retrospective case control study on percutaneous internal fixation for vertical sacral fractures, BMC Musculoskelet. Disord., 2013, 14, 217.
11 CHEN W., HOU Z., SU Y., SMITH W.R., LIPORACE F.A., ZHANG Y., Treatment of posterior pelvic ring disruptions using a minimally invasive adjustable plate, Injury, 2013, 44(7), 975–980.
12 MENDEL T., KUHN P., WOHLRAB D., BREHME K., Minimalinvasive Stabilisierung einer bilateralen Sakrumfraktur mit lumbopelviner Dissoziation, Unfallchirurg, 2009, 112, 590–595.
13 POHLEMANN T., GÄNSSLEN A., SCHELLWALD O., CULEMANN U., TSCHERNE H., Outcome after pelvic ring injuries, Injury, 1996, 27 (Suppl. 2), 31–38.
14 REILLY M.C., BONO C.M., LITKOUHI B., SIRKIN M., BEHRENS F.F., The effect of sacral fracture malreduction on the safe placement of iliosacral screws, J. Orthop. Trauma, 2003, 17(2), 88–94.
15 ROSENBERGER R.E., DOLATI B., LARNDORFER R., BLAUTH M., KRAPPINGER D., BALE R.J., Accuracy of minimally invasive navigated acetabular and iliosacral fracture stabilization using a targeting and noninvasive registration device, Arch. Orthop. Trauma Surg., 2010, 130, 223–230.
16 ROWE S.A., SOCHOR M.S., STAPLES K.S., WAHL W.L., WANG S.C., Pelvic ring fractures: Implications of vehicle design, crash type and occupant characteristics, Surgery, 2004, 136, 842–847.
17 TALLER S., ŠRÁM J., Pakloubpo longitudinální zlomenině centrální zónysakra s kónickou instabilitou pánevní hokruhu, Acta Chir. Orthop. Traum. Čech, 2011,78, 82–85.
18 TOSOUNIDIS G., CULEMANN U., WIRBEL R., HOLSTEIN J.H., POHLEMANN T., Die perkutane transiliosakrale Zugschrauben osteoSynthes©e des hinteren Beckenrings (Erhöhte Sicherheit durch Standardisierung von Visualisierung und Technik), Unfallchirurg, 2007, 110, 669–674.
19 VAN ZWIENEN C.M., VAN DEN BOSCH E.W., SNIJDERS C.J., KLEINRENSINK G.J., VAN VUGT A.B., Biomechanical Comparison of Sacroiliac Screw Techniques for Unstable Pelvic Ring Fractures, J. Orthop. Trauma, 2004, 18, 589–595.
20 ZHENG Z., ZHANG Y., HOU Z., HAO J., ZHAI F., SU Y., PAN J., The application of a computer-assisted thermoplastic membrane navigation system in screw fixation of the sacroiliac joint – A clinical study, Injury, 2012, 43(4), 495–499.
21 ZWINGMANN J., HAUSCHILD O., BODE G., SÜDKAMP N.P., SCHMAL H., Malposition andrevision rates of different imaging modalities for percutaneous iliosacral screw fixation following pelvic fractures: a systematic review and meta-analysis, Arch. Orthop. Trauma Surg., 2013, 133(9), 1257–1265.
DOI :
Qute : Rumian, Ł. ,Reczyńska, K. ,Wrona, M. ,Tiainen, H. ,Haugen, H. J. ,Pamuła, E. ,Turek, A. ,Kasperczyk, J. ,Jelonek, K. ,Borecka, A. ,Janeczek, H. ,Libera, M. ,Gruchlik, A. ,Dobrzyński, P. ,Wojda, S. ,Szoka, B. ,Sajewicz, E. ,Kiel-Jamrozik, M. ,Szewczenko, J. ,Basiaga, M. ,Nowińska, K. ,Salasek, M. ,Jansova, M. ,Křen, J. ,Pavelka, T. ,Weisova, D. ,Weisova, D. , Biomechanical comparison of a transiliac internal fixator and two iliosacral screws in transforaminal sacral fractures: a finite element analysis. Acta of Bioengineering and Biomechanics Vol. 17, nr 1/2015
facebook