Cavitation erosion – a possible cause of the mass loss within thrust zones in the Tatra Mts., Poland

Czasopismo : Acta Geologica Polonica
Tytuł artykułu : Cavitation erosion – a possible cause of the mass loss within thrust zones in the Tatra Mts., Poland

Autorzy :
Wilmsen, M.
Institut fur Palaontologie der Bayerischen Julius-Maximilians-Universitat, Pleicherwall 1, D-97070 Wurzburg, Germany, m.wilmsen@mail.uni-wuerzburg.de,
Chwieduk, E.
Institute of Geology, Adam Mickiewicz University, Makow Polnych Str. 16, PL-61-606 Poznan, Poland, chwieduk@amu.edu.pl,
Jurewicz, E.
Faculty of Geology, University of Warsaw, Al. Żwirki i Wigury 93, PL-02-089 Warsaw, Poland, edyta.jurewicz@uw.edu.pl,
Abstrakty : In the Tatra Mts., thrust-napping and shearing were multi-stage re-activated processes. Their cyclic character was determined by increases and decreases in pore fluid pressure. During each cycle, new parts of the rheologically heterogeneous wall-rock were selectively destroyed due to hydraulic fracturing, brecciation and mylonitization, and moved out as a solution and/or suspension. As a result of these processes, including pressure solution, considerable mass loss could have taken place. All these processes took place under the considerable influence of fluids. In this paper we consider the possible contribution of cavitation erosion to mass loss processes. Displacement along an uneven thrust surface could create chambers filled with fluid and sudden falls in local pressure promoting the inception of cavitation. Cavitation damage, mainly mechanical in nature, could act synergistically with slurry abrasion and pressure solution processes. Our work is of a hypothetical character. To prove the possibility of cavitation erosion within shear zones in the Tatra Mts. we conducted an experiment to show the low resistance of rock samples to cavitation erosion. We also discuss and characterize the conditions essential to induce cavitation within thrust zones at the base of nappes.

Słowa kluczowe : erozja kawitacyjna, góry, strefa naprężeń ścinających, Tatry, Cavitation erosion, Fault slurry, Hydrotectonic pump, Shear zone, Tatra Mts.,
Wydawnictwo : Faculty of Geology of the University of Warsaw
Rocznik : 2007
Numer : Vol. 57, no. 3
Strony : 305 – 323
Bibliografia : AHLGREN, S.G. 2001. The nucleation and evolution of Riedel shear zones as deformation bands in porous sandstone. Journal of Structural Geology, 23, 1203-1214.
ASTM Standard G 134-95. Standard method for erosion of solid materials by a cavitating liquid jet.
BAC-MOSZASZWILI, M., BURCHART, J., GŁAZEK, J., IWANOW, A., JAROSZEWSKI, W., KOTAŃSKI, Z., LEFELD, J., MASTELLA, L., OZIMKOWSKI, W., RONIEWICZ, P., SKUPIŃSKI, A. & WESTFALEWICZ-MOGILSKA, E. 1979. Geological map of the Polish Tatra Mts., 1:30000 scale. Instytut Geologiczny, Warszawa.
BAC-MOSZASZWILI, M., GAMKERLIDZE, I.P., JAROSZEWSKI, W., SCHROEDER, E., STOJANOV, S. & TZANKOV, T.V. 1981. Thrust zone of the Krížna Nappe at Stoły in Tatra Mts (Poland). Studia Geologica Polonica, 68, 61-73.
BOYER, S.E. & ELLIOT, D. 1982. Thrust systems. American Association of Petroleum Geologist Bulletin, 66, 1196-1230.
BRODSKY, E. & KANAMORI, H. 2001. Elastohydrodynamic lubrication of faults. Journal of Geophysical Research, 106, 16357-16374.
CECCIO, S.L. & BRENNEN, C.E. 1991. Observations of the dynamics and acoustics of traveling bubble cavitation. Journal of Fluids Mechanics, 233, 633-660.
COWAN, D.S. 1999. Do faults preserve a record of seismic slip? A field geologist’s opinion. Journal of Structural Geology, 21, 995-1001.
DAVIS, G.H. & REYNOLDS, S.J. 1996. Structural Geology, 755 pp. John Wiley & Sons, Inc.
DI TORO, G., GOLDSBY, D.L., TULLIS, T.E. 2004. Friction falls towards zero in quartz rock as slip velocity approaches seismic rates. Nature, 427, 436-438.
ENDO, K. & NISHIMURA, Y. 1973. Fundamental studies of cavitation erosion. Bulletin of the Japan Society of Mechanical Engineers, 16, 22-30.
ERDMANN-JESNITZER, F. & LOUIS, H. 1973. Shock waves generated by imploding cavitation bubbles, and their influence on materials. In: Finite-amplitude wave effects in fluids. Symposium. Copenhagen, Pubications of IPC Science and Technology Press, Guildford, Surrey, 1974, pp. 210-219.
FELLER, H.G. & KHARRAZI, Y. 1984. Cavitation Erosion of Metals and Alloys, Wear, 93, 249-260.
FRENKEL, J. 1955. Kinetic theory of liquids, 488 pp. Dover, New York.
GALPERIN, R.S., OSKOLKOV, A.G., SEMENKOV, V.M. & TSEDROV, G.N. 1977. Cavitation in hydraulic structures. Izdatielstvo Energiya; Moskva. In Russian
GĄSIENICA-SZOSTAK, M. 1973. Geological setting of the northern slope of the Mała Łąka Valley. M.Sc. thesis, 47 pp. Archiwum Wydziału Geologii Uniwersytetu Warszawskiego. In Polish
GUDMUNDSSON, A. 2001. Fluid overpressure and flow in fault zones: field measurements and models. Tectonophysics, 336, 183-197.
GUDMUNDSSON, A., BERG, S.S., LYSLO, K.B. & SKURTVEIT, E. 2001. Fracture networks and fluid transport in active fault zones. Journal of Structural Geology, 23, 343-353.
HEATHCOCK, C.J., PROTHEROE, B.E. & BALL, A. 1982. Cavitation erosion of stainless steels. Wear, 81, 311-327.
HUBBERT, M.K. & RUBEY, W.W. 1959. Role of fluid pressure in mechanics of overthrust faulting. Part 1. Geological Society of America Bulletin, 70, 115-166.
IDE, S. & TAKEO, M. 1997. Determination of constitutive relations of fault slip based on seismic wave analysis. Journal of Geophysical Research, 102, 27379-27391.
JAEGER, J.C. & COOK, N.G. 1969. Fundamentals of rocks mechanics, 515 pp. Chapman and Hall; London.
JAROSZEWSKI, W. 1982. Hydrotectonic phenomena at the base of the Križna nappe, Tatra Mts. In: M. Mahel’ (Ed.), Alpine structural elements: Carpathian-Balkan-Caucasus-Pamir orogene zone, pp. 137-148. Veda; Bratislava.
JOONG-JEEK, L. & BRUHN, R.L. 1996. Structural anisotropy of normal fault surfaces. Journal of Structural Geology, 18, 1043-1059.
JUREWICZ, E. 2003. Multistage evolution of the shear zone at the base of the Giewont Unit Polish Tatra Mts. Geologica Carpathica, 54, 337-351.
JUREWICZ, E. 2006. Petrophysical control on the mode of shearing in sedimentary rocks and granitoid core of the Tatra Mts. during Late Cretaceous nappe-thrusting and folding, Carpathians, Poland. Acta Geologica Polonica, 57, 159-170.
JUREWICZ, E. & KOZŁOWSKI, A. 2003. Formation conditions of quartz mineralisation in the mylonitic zones and on the slickenside fault planes in the High Tatra granitoids. Archiwum Mineralogiczne, 54, 65-75.
JUREWICZ, E. & SŁABY, E. 2004. The Zadnie Kamienne “ravenous” shear zone (High-Tatric nappe) – conditions of deformation. Geological Quarterly, 48, 371-382.
KASIŃSKI, J. 1981. Cellular dolomites in the High-Tatric Triassic, Polish Tatra Mts. Przegląd Geologiczny, 10, 524-529. In Polish, English summary
KENN, M. 1983. Cavitation and cavitation damage in concrete structures. Proceedings of Sixth Int. Conf. Erosion and Solid Impact, Cambridge (England), September 1983.
KENNEDY, L.A. & LOGAN J.M. 1997. The role of veining and dissolution in the evolution of fine-grained mylonites: the McConnell thrust, Alberta. Journal of Structural Geology, 19, 785-797.
KIM, Y.S., PEACOCK, D.C.P. & SANDERSON, J. 2005. Fault damage zones. Journal of Structural Geology, 26, 503–517.
KIREJCZYK, J. 1979. An attempt to assess cavitation intensity. In: 2nd Scientific Seminar “Cavitation Diagnostics and Mitigation”, IMP PAN Scientific Report. No. 59/973/79, pp. 14-25. In Polish
KNAPP, R., DAILY, W. & HAMMITT, F. 1970. Cavitation, 578 pp. McGraw – Hill; New York.
KOIVULA, T. 2000. On cavitation in fluid power. Proceeding of 1st FPNI-PhD Symposium, Hamburg, 371-382.
KOPF, R.W. 1982. Hydrotectonics: Principles and Relevance: U.S. Geological Survey Open-File Report, 82-307, 30 pp.
KOPF, R.W. 2003. The hydrotectonic hypothesis: a tectonicallyactivated hydraulic system. Unpublished manuscript donated to the U.S. Geological Survey, 38 pp.
KOTAŃSKI, Z. 1956. High-Tatric Campillian in the Tatra Mts. Acta Geologica Polonica, 6, 65-73. In Polish, English summary
KOUTNY, A. 1989. Some regularities of cavitation erosion in solid-liquid mixtures. Transactions of the Institute of Fluid-Flow Machinery, 90/91, 103-111.
KWOK, C.T., CHENG, F.T. & MAN, H.C. 2000. Synergistic effect of cavitation erosion and corrosion of various engineering alloys in 3.5% NaCl solution. Materials Science and Engineering, A290, 145-154.
LAMB, W.S. 1987. Cavitation and aeration in hydraulic systems. Bedfordshire, UK. BHRGroup, 114 pp.
LAUTERBORN, W. 1974. Kavitation durch Laserlicht. Acustica, 31, 51-78.
LICHTAROWICZ, A. 1972. Use of a simple cavitating nozzle for cutting erosion testing and cutting. Nature Physical Science, 239, 63-64.
ŁUCZYŃSKI, P. 2001. Pressure-solution and compaction of condensed Middle Jurassic deposits, High Tatric series, Tatra Mts. Geologica Carpathica, 52, 91-102.
MARON, C. 2004. Earthquake science: Fault greased at high speed. Nature, 427, 405-406.
MILOVSKÝ, R. HURAI, V., PLAŠIENKA, D. & BIROŇ A. 2003. Hydrotectonic regime at soles of overthrust sheets: textural and fluid inclusion evidence from basal cataclasites of the Muráň nappe (Western Carpathians, Slovakia). Geodinamica Acta, 16, 1-20.
MOGI, K. 1995. Earthquake prediction research in Japan. Journal of Physics of the Earth, 43, 533-561.
MOMBER, A.W. 2000. Short-time cavitation erosion of concrete. Wear, 24, 47-52.
PASSCHIER, C.W. & TROUW, R.A.J. 1998. Microtectonics, 253 pp. Springer-Verlag; Berlin.
PETIT, J.P., WIBBERLEY, C.A.J. & RUIZ, G. 1999. “Crackseal”, slip: a new fault valve mechanism? Journal of Structural Geology, 21, 1199-1207.
PIGHINI, U. & BENANTI, A. 1972. Water tunnels and constricted tube devices in cavitation research. Proceedings of the Fourth Conference of Fluid Machinery, pp. 973-990. Akadémiai Kiadó; Budapest.
PLAŠIENKA, D. & SOTÁK, J. 1996. Rauhwackized carbonate tectonic breccias in the West Carpathian nappe edifice: introductory remarks and preliminary results. Slovak Geological Magazine, 3-4, 287-291.
POWER, W.L. & TULLIS, T.E. 1991. Euclidean and fractal models for the description of rock surface roughness, Journal of Geophysical Research, 96, 415-424.
PREECE, C.M. 1979. Cavitation Erosion. In: Treatise on Materials Science and Technology, 16 “Erosion”, p. 249. Academic Press; New York.
RAKÚS, M. & MARSCHALKO, R., 1997. Position of the Manin, Drietoma and Klappe units at the boundary of the Central and Outer Carpathians. In: Alpine evolution of the Western Carpathians and related areas, 79-97. Dionýz Štúr Publishers; Bratislava.
RENARD, F., GRATIER, J.P.& JAMTVEIT, B. 2000. Kinetics of crack-sealing, intergranular pressure solution, and compaction around active faults. Journal of Structural Geology, 22, 1395-1407.
RICHMAN, R.H. & MCNAUGHTON, W.P. 1990. Correlation of cavitation erosion behaviour with mechanical properties of metals. Wear, 140, 63-82.
RITCHIE, R.O. 1999. Mechanisms of fatigue-crack propagation in ductile and brittle solids. International Journal of Fracture, 100, 55-83.
ROBERTS, S.J., NUNN, J.A., CATHLES, L. & CIPRIANI, F.-D. 1996. Expulsion of abnormally pressured fluids along faults. Journal of Geophysical Research, 101, 28231-28252.
SECOR, D.T. 1965. Role of fluid pressure in jointing. American Journal of Science, 263, 633–646.
SHIMADA, A., MIYATAKE, T. & TANIYAMA H. 1996. Dynamic model strong ground motion close to the fault – The 1984 Nagano-ken Seibu earthquake. Jisin, 49, 179-191. In Japanese with an English abstract
SIBSON, R.H. 1996. Structural permeability of fluid-driven fault-fracture meshes. Journal of Structural Geology, 18, 1031-1042.
SIBSON, R.H. 2004. Controls of maximum fluid overpressure defining conditions for mesozonal mineralization. Journal of Structural Geology, 26, 1127-1136.
SIBSON, R.H., MOOR, J.M. & RANKIN, A.H. 1975. Seismic pumping – a hydrothermal fluid transport system. Journal of the Geological Society of London, 131, 653-659.
STELLER, K., KRZYSZTOFOWICZ, T. & REYMANN, Z. 1975. Effects of Cavitation on Materials in Field and Laboratory Conditions. American Society for Testing and Materials, Special Technical Publication, 567, 152.
TERAUCHI, Y., MATUURA, H. & KITAMURA M. 1973. Correlation of cavitation damage tests with residual stress measurements. Bulletin of the Japan Society of Mechanical Engineers, 16, 1829-1840.
WADE, E.H.R. & PREECE C.M. 1978. Cavitation erosion of iron and steel. Metallurgical Transactions A: Physical Metallurgy & Materials Science, 9A, 1299-1310.
WARREN, J. 1999. Evaporites. Their evolution and economics, 422 pp. Blackwell Science; Tokio.
DOI :
Cytuj : Wilmsen, M. ,Chwieduk, E. ,Jurewicz, E. , Cavitation erosion – a possible cause of the mass loss within thrust zones in the Tatra Mts., Poland. Acta Geologica Polonica Vol. 57, no. 3/2007
facebook