Journal : Advances in Materials Science
Article : Cold cracking of underwater wet welded S355G10+N high strength steel

Authors :
Mierzejewska, Ż. A.
Bialystok University of Technology, Faculty of Mechanical Engineering, Department of Materials Science and Biomedical Engineering, ul. Wiejska 45C, 15-351 Bialystok, Poland, a.mierzejewska@doktoranci.pb.edu.pl,
Markowicz, W.
Vilnius Gediminas Technical University, Faculty of Mechanical Engineering, Department of Materials Science and Welding, ul. Basanaviciaus 28, 03224 Vilnius, Lithuania, vladislav.markovic@vgtu.lt,
Czupryński, A.
Silesian University of Technology, Mechanical Engineering Faculty, The Chair of Welding, Konarskiego 18A Street,44-100 Gliwice, Poland, artur.czuprynski@polsl.pl,
Lipiński, T.
University of Warmia and Mazury in Olsztyn, The Faculty of Technical Sciences, Department of Material and Machine Technology, St: Oczapowskiego 11, 10-957 Olsztyn, Poland, tomasz.lipinski@uwm.edu.pl,
Wach, A.
University of Warmia and Mazury in Olsztyn, The Faculty of Technical Sciences, Department of Material and Machine Technology, St: Oczapowskiego 11, 10-957 Olsztyn, Poland,
Detyna, E.
University of Warmia and Mazury in Olsztyn, The Faculty of Technical Sciences, Department of Material and Machine Technology, St: Oczapowskiego 11, 10-957 Olsztyn, Poland,
Rokosz, K.
Koszalin University of Technology, Faculty of Mechanical Engineering, Racławicka 15-17 75-620 Koszalin, Poland, rokosz@tu.koszalin.pl,
Hryniewicz, T.
Koszalin University of Technology, Faculty of Mechanical Engineering, Racławicka 15-17 75-620 Koszalin, Poland,
Dudek, Ł.
Koszalin University of Technology, Faculty of Mechanical Engineering, Racławicka 15-17 75-620 Koszalin, Poland,
Malorny, W.
Hochschule Wismar-University of Applied Sciences Technology, Business and Design, Faculty of Engineering, DE 23966 Wismar, Germany, winfried.malorny@hs-wismar.de,
Fydrych, D.
Gdansk University of Technology, Department of Materials Science and Welding Engineering, Narutowicza 11/12, 80-233 Gdańsk, Poland, darfydry@pg.gda.pl,
Łabanowski, J.
Gdansk University of Technology, Department of Materials Science and Welding Engineering, Narutowicza 11/12, 80-233 Gdańsk, Poland,
Tomków, J.
Gdansk University of Technology, Department of Materials Science and Welding Engineering, Narutowicza 11/12, 80-233 Gdańsk, Poland,
Rogalski, G.
Gdansk University of Technology, Department of Materials Science and Welding Engineering, Narutowicza 11/12, 80-233 Gdańsk, Poland,
Abstract : Water as the welding environment determines some essential problems influencing steel weldability. Underwater welding of high strength steel joints causes increase susceptibility to cold cracking, which is an effect of much faster heat transfer from the weld area and presence of diffusible hydrogen causing increased metal fragility. The paper evaluates the susceptibility to cold cracking of the high strength S355G10+N steel used, among others, for ocean engineering and hydrotechnical structures, which require underwater welding. It has been found from the CTS test results that the investigated steel is susceptible to cold cracking in the wet welding process.

Keywords : underwater welding, wet welding, high strength steel, weldability, cold cracking,
Publishing house : Politechnika Gdańska
Publication date : 2015
Number : Vol.15, nr 3(45)
Page : 48 – 56

Bibliography
: 1. Fydrych D., Łabanowski J., Rogalski G.: Weldability of high strength steels in wet welding conditions. Polish Maritime Research, 2 (2013). Web of Science CrossRef
2. Gao W., Wang D., Cheng F., Deng C., Liu Y., Xu W.: Enhancement of the fatigue strength of underwater wet welds by grinding and ultrasonic impact treatment. Journal of Materials Processing Technology, 223 (2015). Web of Science
3. Zhang H.T., Dai X.Y., Feng J.C., Hu L.L.: Preliminary investigation on real-time induction heating-assisted underwater wet welding. Welding Journal, 1 (2015).
4. Guo N., Du Y., Feng J., Guo W., Deng Z.: Study of underwater wet welding stability using an X-ray transmission method. Journal of Materials Processing Technology, 225 (2015). Web of Science
5. Guo N., Guo W., Du Y., Fu Y., Feng J.: Effect of boric acid on metal transfer mode of underwater flux-cored wire wet welding. Journal of Materials Processing Technology, 223 (2015).
6. Gao W.B., Wang D.P., Cheng F.J., Deng C.Y., Xu W.: Underwater wet welding for HSLA steels: chemical composition, defects, microstructures, and mechanical properties. Acta Metallurgica Sinica (English Letters), 9 (2015).
7. Maksimov S.Y.: Prevention of cold cracks in heat affected zone in underwater welding of low-alloyed high-strength steels. Збірник Наукових Праць НУК, 4 (2014).
8. Silva L.F., dos Santos V.R., Paciornik S., Mertens J.C.E., Chawla N.: Multiscale 3D characterization of discontinuities in underwater wet welds. Materials Characterization, 107 (2015). Web of Science
9. Fydrych D., Rogalski G., Tomków J., Łabanowski J.: The tendency to form cold cracks at the S420G2+M steel joints welded under water using wet method (in Polish). Przegląd Spawalnictwa (Welding Technology Review), 10 (2013).
10. Maksimov S.Y.: Underwater arc welding of higher strength low-alloy steels. Welding International, 6 (2010). CrossRef
11. Omajene J.E., Martikainen J., Wu H., Kah P.: Optimization of underwater wet welding process parameters using neural network. International Journal of Mechanical and Materials Engineering, 1 (2014).
12. Ćwiek J.: Hydrogen degradation of weldable high strength steels (in Polish). Gdansk Univ. Of Technology, Gdańsk 2006.
13. Garašić I., Kralj S., Kožuh Z., Pacak M.: Analysis of underwater repair technology on the jack-up platform spud can. Brodogradnja, 2 (2010).
14. Fydrych D., Łabanowski J., Rogalski G., Haras J., Tomków J., Świerczyńska A., Jakóbczak P., Kostro Ł.: Weldability of S500MC steel in underwater conditions. Advances in Materials Science, 2 (2014).
15. Fydrych D., Kozak T.: Underwater welded joint properties investigation. Advances in Materials Science, 4 (2009).
16. Sharp J.V., Billingham J., Robinson M.J.: The risk management of high-strength steels in jack-ups in seawater. Marine Structures, 14 (2001) CrossRef
17. PN-EN ISO 17642-2:2005 Destructive tests on welds in metallic materials – Cold cracking tests for weldments – Arc welding processes – Part 2: Self-restraint tests
18. Kurji R., Coniglio N.: Towards the establishment of weldability test standards for hydrogen-assisted cold cracking. The International Journal of Advanced Manufacturing Technology, 77 (2015). Web of Science
19. Kannengiesser T., Boellinghaus T.: Cold cracking tests-an overview of present technologies and applications. Welding in the World, 1 (2013).
20. PN-EN 10225:2011 Weldable structural steels for fixed offshore structures – Technical delivery conditions.
21. PN-EN ISO 17637:2011 Non-destructive testing of welds. Visual testing of fusion-welded joints
22. PN-EN ISO 3452-1:2013-08 Non-destructive testing — Penetrant testing — Part 1: General principles
23. PN-EN ISO 17639:2013-12 Destructive tests on welds in metallic materials – Macroscopic and microscopic examination of welds
24. PN-EN ISO 9015-1:2011 Non-destructive testing of welds. Hardness testing. Part 1.
25. PN-EN ISO 15614-1:2008 Specification and qualification of welding procedures for metallic materials -Welding procedure test – Arc and gas welding of steels and arc welding of nickel and nickel alloys.
DOI :
Qute : Mierzejewska, Ż. A. ,Markowicz, W. ,Czupryński, A. ,Lipiński, T. ,Wach, A. ,Detyna, E. ,Rokosz, K. ,Hryniewicz, T. ,Dudek, Ł. ,Malorny, W. ,Fydrych, D. ,Łabanowski, J. ,Tomków, J. ,Rogalski, G. ,Rogalski, G. , Cold cracking of underwater wet welded S355G10+N high strength steel. Advances in Materials Science Vol.15, nr 3(45)/2015
facebook