Journal : Acta Geologica Polonica
Article : Compaction of lignite: a review of methods and results

Authors :
Gaetani, M.
Dipartimento di Scienze della Terra, Universita’ di Milano, Italia,,
Meço, S.
Fakulteti Gjeologji-Miniera,Tirana, Albania,,
Rettori, R.
Dipartimento di Scienze della Terra, Universita’ di Perugia, Italia,,
Henderson, C. M.
Department of Geoscience, University of Calgary, Canada,,
Tulone, A.
Dipartimento di Scienze della Terra, Universita’ di Perugia, Italia,,
Łuczyński, P.
Institute of Geology, University of Warsaw, Al. Żwirki i Wigury 93; PL-02-089 Warszawa, Poland,,
Kozłowski, W.
Institute of Geology, University of Warsaw, Al. Żwirki i Wigury 93; PL-02-089 Warszawa, Poland,,
Skompski, S.
Institute of Geology, University of Warsaw, Al. Żwirki i Wigury 93; PL-02-089 Warszawa, Poland,,
Oszczypko, N.
Jagiellonian University, Institute of Geological Sciences, Oleandry 2a, 30-063 Kraków, Poland,,
Ślączka, A.
Jagiellonian University, Institute of Geological Sciences, Oleandry 2a, 30-063 Kraków, Poland,,
Oszczypko-Clowes, M.
Jagiellonian University, Institute of Geological Sciences, Oleandry 2a, 30-063 Kraków, Poland,,
Olszewska, B.
Polish Geological Institute, Carpathian Branch, Skrzatów 1, 31-560 Kraków, Poland,
Jeans, C. V.
Department of Geography, University of Cambridge, Downing Place, Cambridge CB2 3EN, U.K.,,
Wray, D. S.
Department of Earth and Environment Sciences, University of Greenwich, Pembroke, Chatham Maritime, Kent ME4 4TB, U.K.,
Williams, C. T.
Department of Mineralogy, Natural History Museum, Cromwell Road, London SW7 5BD, U.K.,
Widera, M.
Institute of Geology, Adam Mickiewicz University, Maków Polnych 16, 61-606 Poznań, Poland,,
Abstract : The published peat:coal compaction ratios range from 1.1:1 to 60:1 and from 1.1:1 to 11:1 for lignites. These probably represent realistic end-member values for the degree of compaction during the transformation of peat into lignite and then to coal. Hence, in many cases, the obtained values of the compaction ratio are under- or overestimated with reference to the entire coal seam. This study focuses on the changes of thickness between a peat bed and the resulting lignite seam. The fundamental question is how many times the thickness of the peat bed, prior to covering the mire by the overburden, was greater than the present-day thickness of the lignite seam. The majority of methods reported in this paper cannot be used directly to quantify the amount of compaction of the lignite seam. In this context, the only category of methods which allow a direct estimation of the peat:lignite compaction ratio are the so-called stratigraphic methods. Therefore, based on comparison of the initial peat bed thickness with lignite seam thickness, the most accurate peat:lignite compaction ratio ranges from 2:1 to 4:1.

Keywords : torf, węgiel brunatny, węgiel, proces zagęszczania, wskaźnik zagęszczenia, peat, lignite, coal, compaction process, compaction ratio, peat:lignite compaction ratio,
Publishing house : Faculty of Geology of the University of Warsaw
Publication date : 2015
Number : Vol. 65, no. 3
Page : 367 – 378

: 1. Allen, J.R.L. 2000. Holocene coastal lowlands: autocompaction and the uncertain ground. In: Pye, K., Allen, J.R.L. (Eds), Coastal and estuarine environments: sedimentology, geomorphology and geoarchaeology. Geological Society, London, Special Publications, 175, 239–252.
2. Allen, P.A. and Allen, J.R. 1990. Basin Analysis – Principles and Applications. Blackwell Scientific Publications; Oxford.
3. Baldwin, B. and Butler, C.O. 1985. Compaction curves. American Association of Petroleum Geologist Bulletin, 69, 622–626.
4. Bird, M.I., Fifield, L.K., Chua, S. and Goh, B. 2004. Calculating sediment compaction for radiocarbon dating of intertidal sediments. Radiocarbon, 46, 421–435.
5. Bloom, A.L. 1964. Peat Accumulation and Compaction in a Connecticut Coastal Marsh. Journal of Sedimentary Petrology, 34, 599–603.
6. Brezigar, A. 1985/86. Coal seam of the Velenje coal mine – Premogova plast Rudnika lignita Velenje. Geologija, 28/29, 319–336. In Slovene with English summary
7. Buurman, P. 1972. Mineralization of fossil wood. Scripta Geologica, 12, 1–43.
8. Collinson, M.E. and Scott, A.C. 1987. Implications of vegetal change through the geological record on models for coal-forming environments. In: Scott, A.C. (Ed.), Coal and coal-bearing strata: recent advances. Geological Society, London, Special Publication, 32, 67–85.
9. Courel, L. 1987. Stages in the compaction of peat; examples from the Stephanian and Permian of the Massif Central, France. Journal of the Geological Society, London, 144, 489–493.
10. Christanis, K., Georgakopoulos, A., Fernández-Turiel, J.L. and Bouzinos, A. 1998. Geological factors influencing the concentration of trace elements in the Philippi peatland, eastern Macedonia, Greece. International Journal of Coal Geology, 36, 295–313.
11. DeMaris, Ph.J., Bauer, R.A., Cahill, R.A. and Damberger, H.H. 1983. Geological investigation of roof and floor strata: longwall demonstration, Old Ben Mine no. 24. Prediction of coal balls in the Herrin Coal, Final Technical report: part 2. Illinois State Geological Survey, 69 pp.
12. Doglioni, C. and Goldhammer, R.K. 1988. Compaction-induced subsidence in the margin of a carbonate platform. Basin Research, 1, 237–246.
13. Elliot, R.E. 1985. Quantification of peat to coal compaction stages, based especially on phenomena in the East Peninnine Coalfield, England. Proceedings of the Yorkshire Geological Society, 45, 163–172.
14. Falini, F. 1965. On transformation of coal deposits of lacustrine origin. Geological Society of America Bulletin, 76, 1317–1346.
15. Flores R.M. 2013. Coal and Coalbed Gas: Fueling the Future. Waltman, MA, Elsevier, 697 pp.
16. Gayer, R.A. and Pešek, J. 1992. Cannibalisation of coal measures in the South Wales Coalfield – significance for foreland basin evolution. Proceedings of the Ussher Society, 8, 44–49.
17. Glockner, F. 1912. Das Volumenverhältnis zwischen Moortorf und daraus resultierender autochthoner Humusbraunkohle. Zeitschrift für Praktische Geologie, 20, 371.
18. Greb, S.F., Andrews, W.M., Eble, C.R., DiMichele, W., Cecil, C.B. and Hower, J.C. 2003. Desmoinesian coal beds of the Eastern Interior and surrounding basins; The largest tropical peat mires in Earth history. In: Chan, M.A., Archer, A.W. (Eds), Extreme depositional environments: Mega end members in geologic time: Boulder, Colorado, Geological Society of America Special Paper, 370, 127–150.
19. Hager, H. 1993. Origin of the Tertiary lignite deposits in the lower Rhine region, Germany. International Journal of Coal Geology, 23, 251–262.
20. Hager, H., Kothen, H. and Spann, R. 1981. Zur Setzung der Rheinischen Braunkohle und ihrer klastischen Begleitschichten. Fortschritte in der Geologie von Rheinland und Westfalen, 29, 319–352.
21. Haslett, S.K., Davies, P., Curr, R.H.F., Davies, C.F.C., Kennington, K., King, C.P. and Margetts, A.J. 1998. Evaluating late-Holocene relative sea-level change in the Somerset Levels, southwest Britain. The Holocene, 8, 197–207.
22. Hurník, S. 1972. Compaction coefficient of some rocks in the North-Bohemian Lignite Mining District (SHR) – Koeficient sendutí některých hornin v SHR. Časopis pro mineralogii a geologii (now Journal of Geosciences, Czech, Praha), 4, 365–372. In Czech with English summary
23. Hurník, S. 1990. Clastic dikes in the brown coal seam near Most in the North Bohemian Basin (Miocene). Sborník geologických Věd, Geologie, 45, 132–150.
24. Jerrett, Rh.M., Flint, S.S., Davies, R.C. and Hodgson, D.M. 2011. Sequence stratigraphic interpretation of a Pennsylvanian (Upper Carboniferous) coal from the central Appalachian Basin, USA. Sedimentology, 58, 1180–1207.
25. Kasiński, J.R. 1984. Synsedimentary tectonics as the factor determining sedimentation of brown coal formation in tectonic depressions in western Poland. Przegląd Geologiczny, 32, 260–268. In Polish with English summary
26. Kasiński, J.R. 1985. Synsedimentary tectonics as a factor controlling sedimentation of brown-coal formations in tectonic depressions in western Poland. In: Borisov, V.S. (Ed.), Solid Fuel Mineral Deposits. Proceedings 27th International Geological Congress., Moscow, 14, 247–279, VNU Science Press, Utrecht.
27. Kojima, S., Sweda, T., LePage, B.A. and Basinger, J.F. 1998. A new method to estimate accumulation rates of lignites in the Eocene Buchanan Lake Formation, Canadian Arctic. Palaeogeography Palaeoclimatology Palaeoecology, 106, 115–122.
28. Law, B.E., Hatch, J.R., Kukal, G.C. and Keichin, C.W. 1983. Geological implications of coal dewatering. American Association of Petroleum Geologist Bulletin, 67, 2255–2260.
29. Long, A.J., Waller, M.P. and Stupples, P. 2006. Driving mechanisms of coastal change: Peat compaction and the destruction of late Holocene coastal wetlands. Marine Geology, 225, 63–122.
30. Miall, A.D. 1981. Alluvial sedimentary basins: tectonic setting and basin architecture. In: Miall, A.D. (Ed.), Sedimentation and Tectonics in Alluvial Basins, Geological Association of Canada, Special Paper, 23, 1–33.
31. McCabe, P.J. 1984. Depositional models of coal and coal-bearing strata. In: Rahmani, R.A., Flores, R.M. (Eds), Sedimentology of coal and coal-bearing sequences. International Association of Sedimentologists, Special Publication, 7, 13–42.
32. McCabe, P.J. 1987. Facies studies of coal and coal-bearing strata. In: Scott, A.C. (Ed.), Coal and Coal-bearing Strata: Recent Advances. Geological Society, London, Special Publications, 32, 51–66.
33. Markič, M. and Sachsenhofer, R.F. 1997. Petrographic composition and depositional environments of the Pliocene Velenje lignite seam (Slovenia). International Journal of Coal Geology, 33, 229–254.
34. Michon, L., van Balen, R.T., Merle, O. and Pagnier, H. 2003. The Cenozoic evolution of the Roer Valley rift system integrated at European scale. Tectonophysics, 367, 101–126.
35. Nadon, G.C. 1998. Magnitude and timing of peat-to-coal compaction. Geology, 26, 727–730.
36. Nelson, W.J. 1983. Geologic disturbances in Illinois coal seams. Illinois State Geological Survey Circular 530, 50 pp.
37. Petersen, H.I., Nielsen, L.H., Koppelhus, E.B. and Sørensen, H.S. 2003. Early and Middle Jurassic mires of Bornholm and the Fennoscandian Border Zone: a comparison of depositional environments and vegetation. Geological Survey of Denmark and Greenland Bulletin, 1, 631–656.
38. Piwocki, M. 1975. The Tertiary of the Rawicz vicinity and its coal-bearing properties. Biuletyn Instytutu Geologicznego, 284, 73–132. In Polish with English summary
39. Rajchl, M. and Uličný, D. 2005. Depositional record of an avulsive fluvial system controlled by peat compaction (Neogene, Most Basin, Czech Republic). Sedimentology, 52, 601–625.
40. Rajchl, M., Uličný, D., Grygar, R. and Mach, K. 2009. Evolution of basin architecture in an incipient continental rift: the Cenozoic Most Basin, Eger Graben (Central Europe). Basin Research, 21, 269–294.
41. Ryer, T.A. and Langer, A.W. 1980. Thickness change involved in the peat-to-coal transformation for a bituminous coal of Cretaceous age in central Utah. Journal of Sedimentary Petrology, 50, 987–992.
42. Salinas, E., Beaudoin, B., Cojan, I. and Mercier, D. 1990. Sedimentary dynamics in French coal-measures reconstituted by decompaction and litho-/bio-facies analysis. International Journal of Coal Geology, 16, 171–174.
43. Schäfer, A., Hilger, D., Gross, G. and von der Hocht, F. 1995. Cyclic sedimentation in Tertiary Lower-Rhine Basin (Germany) – the “Liegendrücken” of the brown-coal open-cast Fortuna mine. Sedimentary Geology, 103, 229–247.
44. Schäfer, A. and Utescher, T. 2014. Origin, sediment fill, and sequence stratigraphy of the Cenozoic Lower Rhine Basin (Germany) interpreted from well logs. Zeitschrift der Deutschen Gesellschaft für Geowissenschaften, 165, 287–314.
45. Schäfer, A., Utescher, T., Klett, M. and Valdivia-Manchego, M. 2005. The Cenozoic Lower Rhine Basin – rifting, sedimentation, and cyclic stratigraphy. International Journal of Earth Sciences, 94, 621–639.
46. Schäfer, A., Utescher, T. and Mörs, Th. 2004. Stratigraphy of the Cenozoic Lower Rhine Basin northwestern Germany. Newsletters on Stratigraphy, 40, 73–110.
47. Scott, A.C. and Collinson, M.E. 1983. Investigating fossil plant beds. Part I: the origin of fossil plants and their sediments. Geology Teaching, 7, 114–122.
48. Sheldon, N.D. and Retallack, G.J. 2001. Equation for compaction of paleosols due to burial. Geology, 29, 247–250.
49. Smith, R.I.L. and Clymo, R.S. 1984. An extraordinary peatforming community on the Falkland Islands. Nature, 309, 617–620.
50. Stach, E., Taylor, G.H., Mackowsky, M.-Th., Shandra, D., Teichmüller, M. and Teichmüller, R. 1975. Stach’s textbook of coal petrology, 428 pp. Gebruder Borntraeger; Berlin.
51. Stach, E., Mackowsky, M.-Th., Teichmüller, M., Taylor, G.H., Shandra, D. and Teichmüller, R. 1982. Stach’s textbook of coal petrology, 535 pp. Gebrüder Borntraeger; Berlin.
52. Stout, S.A. and Spackman, W. 1989. Notes on the compaction of a Florida peat and the Brandon lignite as deduced from the study of compressed wood. International Journal of Coal Geology, 11, 247–256.
53. Taylor, G.H., Teichmüller, M., Davis, A., Diessel, C.F.K., Littke, R. and Robert, P. 1998. Organic Petrology, 704 pp. Gebruder Borntraeger; Berlin.
54. Teichmüller, M. 1968. Zür Petrographie und Diagenese eines fast 200 m machtigen Torfprofils (mit übergangen zur Weichbraunkohle?) im Quartär von Philippi (Mazedonien.). Geologische Mitteilungen, 8, 65–110.
55. Teichmüller, R. 1955. Sedimentation und Setzung im Ruhrkarbon. Neues Jahrbuch für Geologie und Palaeontologie, 4, 145–168.
56. Ten Veen, J.H. and Kleinspehn, K.L. 2000. Quantifying the timing and sense of fault dip slip: New application of biostratigraphy and geohistory analysis. Geology, 28, 471–474.
57. Ting, F.T.C. 1977. Microscopical investigation of the transformation (diagenesis) from peat to lignite. Journal of Microscopy 109, 75–83.
58. Van Asselen, S. 2011. The contribution of peat compaction to total basin subsidence: implications for the provision of accommodation space in organic-rich deltas. Basin Research, 23, 239–255.
59. Van Asselen, S., Stouthamer, E. and van Asch, Th.W.J. 2009. Effects of peat compaction on delta evolution: a review on processes, responses, measuring and modeling. Earth-Science Reviews, 92, 35–51.
60. Van Hinte, J.E. 1978. Geohistory analysis – Application of micropaleontology in exploration geology. American Association of Petroleum Geologist Bulletin, 62, 210–222.
61. Volkov, V.N. 1965. On possible thickness decrease of layers in the interval peat–anthracite. Soviet Geologiya (Soviet Geology), 5, 85–97. In Russian with English summary
62. Volkov, V.N. 2003. Phenomenon of the Formation of Very Thick Coal Beds. Lithology and Mineral Resources, 38, 223–232.
63. White, J.M. 1986. Compaction of Wyodak Coal, Powder River Basin, Wyoming, USA. International Journal of Coal Geology, 6, 139–147
64. Widera, M. 2002. An attempt to determine consolidation coefficient of peat for lignite seams. Przegląd Geologiczny, 50, 42–48. In Polish with English summary
65. Widera, M. 2013a. Remarks on determining of the compaction coefficient of xylites for the first Middle-Polish lignite seam in central Poland. Przegląd Geologiczny, 61, 304–310. In Polish with English summary
66. Widera, M. 2013b. Changes of the lignite seam architecture – a case study from Polish lignite deposits. International Journal of Coal Geology, 114, 60–73.
67. Widera, M., Ćwikliński, W. and Karman, R. 2008. Cenozoic tectonic evolution of the Poznań-Oleśnica Fault Zone, central-western Poland. Acta Geologica Polonica, 58, 455–471.
68. Widera, M. and Hałuszczak, A. 2011. Stages of the Cenozoic tectonics in central Poland: examples from selected grabens. Zeitschrift der Deutschen Gesellschaft für Geowissenschaften, 162, 203–215.
69. Widera, M., Jachna-Filipczuk, G., Kozula, R. and Mazurek, S. 2007. From peat bog to lignite seam: a new method to calculate the consolidation coefficient of lignite seams, Wielkopolska region in central Poland. International Journal of Earth Sciences, 96, 947–955.
70. Winston, R.B. 1986. Characteristics features and compaction of plant tissues traced from permineralized peat to coal in Pennsylvanian coals (Desmoinesian) from the Illinois basin. International Journal of Coal Geology , 6, 21–41.
71. Zaritsky, P.V. 1975. On thickness decrease of parent substance of coal: International Congress on Carboniferous Stratigraphy and Geology, 7th, Krefeld, Comptes Rendus, 4, 393–396.
Qute : Gaetani, M. ,Meço, S. ,Rettori, R. ,Henderson, C. M. ,Tulone, A. ,Łuczyński, P. ,Kozłowski, W. ,Skompski, S. ,Oszczypko, N. ,Ślączka, A. ,Oszczypko-Clowes, M. ,Olszewska, B. ,Jeans, C. V. ,Wray, D. S. ,Williams, C. T. ,Widera, M. ,Widera, M. , Compaction of lignite: a review of methods and results. Acta Geologica Polonica Vol. 65, no. 3/2015