Journal : Acta Geophysica
Article : DInSAR technique for three-dimensional coastal spit simulation from Radarsat-1 fine mode data

Authors :
Vitkulin, A. V.
Institute of Volcanology and Seismology, Far East Branch, Russian Academy of Sciences, Petropavlovsk-Kamchatski, Russia,,
Semenov, V. Y.
Institute of Geophysics, Polish Academy of Sciences, Warszawa, Poland,,
Majewski, E.
Institute of Geophysics, Polish Academy of Sciences, Warszawa, Poland,,
Nenovski, P.
National Institute for Geophysics, Geodesy and Geography, Sofia, Bulgaria,,
Sayil, N.
Karadeniz Technical University, Engineering Faculty, Department of Geophysics, Trabzon, Turkey,,
Nguyen, N. T.
Institute of Marine Geology and Geophysics, Vietnam Academy of Science and Technology, Hanoi, Vietnam,,
Neska, A.
Institute of Geophysics, Polish Academy of Sciences, Warszawa, Poland,,
Tokarczyk, T.
Institute of Meteorology and Water Management, National Research Institute, Wrocław Branch, Wrocław, Poland,,
Asfahani, J.
Geology Department, Atomic Energy Commission, Damascus, Syria,,
Pietruczuk, A.
Institute of Geophysics, Polish Academy of Sciences, Warszawa, Poland,,
Hattermann, F. F.
Potsdam Institute for Climate Impact Research (PIK), Potsdam, Germany,,
Marghany, M.
Institute for Science and Technology Geospatial (INSTeG), University of Technology, Malaysia (UTM), Skudai, Johor Bahru, Malaysia,,
Abstract : This work presents a new approach to 3D spit simulation using differential synthetic aperture interferometry (DInSAR). In doing so, conventional DInSAR procedures are implemented to three repeat passes of RADARSAT-1 SAR fine mode data (F1). Further, a new application of using fuzzy B-spline algorithm is implemented with phase unwrapping technique. The study shows that the performance of DInSAR method using fuzzy B-spline is better than the DInSAR technique, which is vali- dated by the coefficient of determination r² of 0.96, probability p of 0.002, and accuracy (RMSE) of ± 0.034 m, with 90 per cent confidence intervals. In conclusion, integration of fuzzy B-spline with phase unwrapping produces an accurate 3D coastal geomorphology reconstruction.

Keywords : DInSAR, fringe, interferogram, fuzzy B-spline algorithm, coastal geomorphology, split, digital elevation model (DEM),
Publishing house : Instytut Geofizyki PAN
Publication date : 2013
Number : Vol. 61, no. 2
Page : 478 – 493

: Anile, A.M., S. Deodato, and G. Privitera (1995), Implementing fuzzy arithmetic, Fuzzy Set. Syst. 72, 2, 239-250, DOI: 10.1016/0165-0114(94)00355-B.
Anile, A.M., B. Falcidieno, G. Gallo, M. Spagnuolo, and S. Spinello (2000), Modeling uncertain data with fuzzy B-splines, Fuzzy Set. Syst. 113, 3, 397-410, DOI: 10.1016/S0165-0114(98)00146-8.
Askne, J., M. Santoro, G. Smith, and J.E.S. Fransson (2003), Multitemporal repeatpass SAR interferometry of boreal forests, IEEE Trans. Geosci. Remote Sens. 41, 7, 1540-1550, DOI: 10.1109/TGRS.2003.813397.
Bürgmann, R., P.A. Rosen, and E.J. Fielding (2000), Synthetic aperture radar interferometry to measure Earth’s surface topography and its deformation, Ann. Rev. Earth Plan. Sci. 28, 169-209, DOI: 10.1146/
Dall, J. (2007), InSAR elevation bias caused by penetration into uniform volumes, IEEE Trans. Geosci. Remote Sens. 45, 7, 2319-2324, DOI: 10.1109/TGRS. 2007.896613.
Fan, H., K. Deng, C. Ju, C. Zhu, and J. Xue (2011), Land subsidence monitoring by D-InSAR technique, Min. Sci. Technol. (China) 21, 6, 869-872, DOI: 10.1016/j.mstc.2011.05.030.
Fuchs, H., Z.M. Kedem, and S.P. Uselton (1977), Optimal surface re construction from planar contours, Commun. ACM 20, 10, 693-702, DOI: 10.1145/359842.359846.
Gens, R. (2000), The influence of input parameters on SAR interferometric processing and its implication on the calibration of SAR interferometric data, Int. J. Remote Sens. 21, 8, 1767-1771, DOI: 10.1080/014311600210056.
Hanssen, R.F. (2001), Radar Interferometry: Data Interpretation and Error Analysis, Kluwer Academic Publ., Dordrecht.
Lee, H. (2001), Interferometric synthetic aperture radar coherence imagery for land surface change detection, Ph.D. Thesis, University of London.
Luo, X., F. Huang, and G. Liu (2006), Extraction co-seismic Deformation of Bam earthquake with Differential SAR Interferometry, J. New Zea. Inst. Surv. 296, 20-23.
Marghany, M. (2011), Three-dimensional visualisation of coastal geomorphology using fuzzy B-spline of dinsar technique, Int. J. Phys. Sci. 6, 30, 6967-6971, DOI: 10.5897/IJPS11.768.
Marghany, M. (2012), 3-D coastal bathymetry simulation from airborne TOPSAR polarized data. In: P. Blondel (ed.), Bathymetry and Its Applications, In-Tech Open Access Publisher, University Campus STeP Ri, Croatia, 57-76.
Marghany, M., and M. Hashim (2009), Differential synthetic aperture radar interferometry (DINSAR) for 3D coastal geomorphology reconstruction, Int. J. Comput. Sci. Network Secur. 9, 5, 59-63.
Marghany, M., and M. Hashim (2010a), Different polarised topographic synthetic aperture radar (TOPSAR) bands for shoreline change mapping, Int. J. Phys. Sci. 5, 12, 1883-1889.
Marghany, M., and M. Hashim (2010b), Velocity bunching and Canny algorithms for modelling shoreline change rate from synthetic aperture radar (SAR), Int. J. Phys. Sci. 5, 12, 1908-1914.
Marghany, M., A.P. Cracknell, and M. Hashim (2010a), 3-D visualizations of coastal bathymetry by utilization of airborne TOPSAR polarized data, Int. J. Dig. Earth 3, 2, 187-206, DOI: 10.1080/17538940903477406.
Marghany, M., Z. Sabu, and M. Hashim (2010b), Mapping coastal geomorphology changes using synthetic aperture radar data, Int. J. Phys. Sci. 5, 12, 1890-1896.
Massonnet, D., and K.L. Feigl (1998), Radar interferometry and its application to changes in the Earth’s surface, Rev. Geophys. 36, 4, 441-500, DOI: 10.1029/97RG03139.
Nizalapur, V., R. Madugundu, and C. Shekhar Jha (2011), Coherence-based land cover classification in forested areas of Chattisgarh, Central India, Rusing environmental satellite – advanced synthetic aperture radar data, J. Appl. Remote Sens. 5, 059501-1-059501-6, DOI: 10.1117/1.3557816.
RADARSAT International (2012), RADARSAT application, available online from
Rao, K.S., and H.K. Al-Jassar (2010), Error analysis in the digital elevation model of Kuwait desert derived from repeat pass synthetic aperture radar interferometry, J. Appl. Remote Sens. 4, 1-24, DOI: 10.1117/1.3504170.
Rao, K.S., H.K. Al-Jassar, S. Phalke, Y.S. Rao, J.P. Muller, and Z. Li (2006), A study on the applicability of repeat-pass SAR interferometry for generating DEMs over several Indian test sites, Int. J. Remote Sens. 27, 3, 595-616, DOI: 10.1080/01431160500239248.
Rövid, A., A.R. Várkonyi-Koczy, and P. Várlaki (2004), 3D model estimation from multiple images. In: IEEE Int. Conf. on Fuzzy Systems FUZZ-IEEE’2004, 25-29 July 2004, Budapest, Hungary, 1661-1666, DOI: 10.1109/FUZZY.2004.1375430.
Russo, F. (1998), Recent advances in fuzzy techniques for image enhancement, IEEE Trans. Instrum. Meas. 47, 6, 1428-1434, DOI: 10.1109/19.746707.
Sumantyo, J.T.S., M. Shimada, P. Mathieu, and H.Z. Abidin (2012), Long-term consecutive DInSAR for volume change estimation of land deformation, IEEE Trans. Geosci. Remote Sens. 50, 1, 259-270, DOI: 10.1109/TGRS.2011.2160455.
Yang, J., T. Xiong, and Y. Peng (2007), A fuzzy approach to filtering interferometric SAR data, Int. J. Remote Sens. 28, 6, 1375-1382, DOI: 10.1080/01431160600740715.
Zebker, H.A., C.L. Werner, P.A. Rosen, and S. Hensley (1994), Accuracy of topographic maps derived from ERS-1 interferometric radar, IEEE Trans. Geosci. Remote Sens. 32, 4, 823-836, DOI: 10.1109/36.298010.
Zebker, H.A., P.A. Rosen, and S. Hensley (1997), Atmospheric effects in interferometric synthetic aperture radar surface deformation and topographic maps, J. Geophys. Res. 102, B4, 7547-7563, DOI: 10.1029/96JB03804.
Qute : Vitkulin, A. V. ,Semenov, V. Y. ,Majewski, E. ,Nenovski, P. ,Sayil, N. ,Nguyen, N. T. ,Neska, A. ,Tokarczyk, T. ,Asfahani, J. ,Pietruczuk, A. ,Hattermann, F. F. ,Marghany, M. ,Marghany, M. , DInSAR technique for three-dimensional coastal spit simulation from Radarsat-1 fine mode data. Acta Geophysica Vol. 61, no. 2/2013