Journal : Acta Geophysica
Article : Determination of Sedimentary Basin Basement Depth: A Space Domain Based Gravity Inversion using Exponential Density Function

Authors :
Białecki, M.
Institute of Geophysics, Polish Academy of Sciences, Warszawa, Poland, bialecki@igf.edu.pl,
Bevis, M.
School of Earth Sciences, Ohio State University, Columbus, Ohio, USA, mbevis@osu.edu,
Pan, E.
Department of Civil Engineering, University of Akron, Akron, Ohio, USA,
Zhou, H.
School of Earth Sciences, Ohio State University, Columbus, Ohio, USA,
Han, F.
Department of Civil Engineering, University of Akron, Akron, Ohio, USA,
Zhu, R.
Department of Civil Engineering, University of Akron, Akron, Ohio, USA,
Sun, Q.
School of Resources and Geosciences, China University of Mining and Technology, Xuzhou, China, sunqiang04@126.com,
Xue, L.
Key Laboratory of Shale Gas and Geoengineering, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China,
Zhu, S.
School of Resources and Geosciences, China University of Mining and Technology, Xuzhou, China,
Hekmatian, M. E.
Faculty of Basic Sciences of Science and Research Branch, Islamic Azad University, Tehran, Iran; Nuclear Fuel Cycle Research School of Nuclear Science and Technology Research Institute (NSTRI), Tehran, Iran, mhekmatian@aeoi.org.ir,
Ardestani, V. E.
Institute of Geophysics, University of Tehran, Tehran, Iran, ebrahimz@ut.ac.ir,
Riahi, M. A.
Institute of Geophysics, University of Tehran, Tehran, Iran, mariahi@ut.ac.ir,
Bagh, A. M. K.
Nuclear Fuel Cycle Research School of Nuclear Science and Technology Research Institute (NSTRI), Tehran, Iran; Faculty of Engineering of South Tehran Branch, Islamic Azad University, Tehran, Iran, amemar@aeoi.org.ir,
Amini, J.
Faculty of Engineering, University of Tehran, Tehran, Iran, jamini@ut.ac.ir,
Cheng, B.
State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Chengdu University of Technology, Chengdu, China / Key Laboratory of Earth Exploration and Information Technology of Ministry of Education, Chengdu University of Technology, Chengdu, China / Meteorological Information and Signal Processing / Key Laboratory of Sichuan Higher Education Institutes, Chengdu University of Information Technology, Chengdu, China, chengbingjie09@cdut.cn,
Xu, T.
3rd Geophysical Institute, Exploration and Production Institute, Southwest Oil and Gas Company, SINOPEC, Chengdu, China,
Robbins, B.
Fugro Aperio, Fugro Onshore Geotechnics, Wallingford, Oxfordshire, UK,
Shen, Z. M.
State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Chengdu University of Technology, Chengdu, China,
Toushmalani, R.
Department of Computer, Faculty of Engineering, Kangavar Branch, Islamic Azad University, Kangavar, Iran, geoman110@gmail.com,
Saibi, H.
Laboratory of Exploration Geophysics, Department of Earth Resources Engineering, Faculty of Engineering, Kyushu University, Fukuoka, Japan, saibi-hakim@mine.kyushu-u.ac.jp,
Chakravarthini, V.
Centre for Earth and Space Sciences, University of Hyderabad, Hyderabad, India, vcvarthi@rediffmail.com,
Ramamma, B.
Centre for Earth and Space Sciences, University of Hyderabad, Hyderabad, India, ramageophd@gmail.com,
Abstract : An automatic inversion using ridge regression algorithm is developed in the space domain to analyze the gravity anomalies of sedimentary basins, among which the density contrast decreases with depth following a prescribed exponential function. A stack of vertical prisms having equal widths, whose depths become the unknown parameters to be estimated, describes the geometry of a sedimentary basin above the basement complex. Because no closed form analytical equation can be derivable in the space domain using the exponential density-depth function, a combination of analytical and numerical approaches is used to realize forward gravity modeling. The depth estimates of sedimentbasement interface are initiated and subsequently improved iteratively by minimizing the objective function between the observed and modeled gravity anomalies within the specified convergence criteria. Two gravity anomaly profiles, one synthetic and a real, are interpreted using the proposed technique to demonstrate its applicability.

Keywords : gravity anomaly, exponential density contrast, automatic inversion, space domain, sedimentary basin,
Publishing house : Instytut Geofizyki PAN
Publication date : 2015
Number : Vol. 63, no. 4
Page : 1066 – 1079

Bibliography
: 1 Abbott, R.E., and J.N. Louie (2000), Depth to bedrock using gravimetry in the Reno and Carson City, Nevada, area basins, Geophysics 65, 2, 340-350, DOI: 10.1190/1.1444730.
2 Abdoh, A., D. Cowan, and M. Pilkington (1990), 3D gravity inversion of the Cheshire basin, Geophys. Prospect. 38, 8, 999-1011, DOI: 10.1111/j.1365-2478.1990.tb01887.x.
3 Blakely, R.J. (1995), Potential Theory in Gravity and Magnetic Applications, Cambridge University Press, Cambridge.
4 Bott, M.H.P. (1960), The use of rapid digital computing methods for direct gravity interpretation of sedimentary basins, Geophys. J. Int. 3, 1, 63-67, DOI: 10.1111/j.1365-246X.1960.tb00065.x.
5 Chai, Y., and W.J. Hinze (1988), Gravity inversion of an interface above, which the density contrast varies exponentially with depth, Geophysics 53, 6, 837-845, DOI: 10.1190/1.1442518.
6 Chakravarthi, V. (2003), Digitally implemented method for automatic optimization of gravity fields obtained from three-dimensional density interfaces using depth dependent density, US Patent 6615139 B1.
7 Chakravarthi, V., and B. Ramamma (2013), Gravity anomaly modeling of multiple geological sources having different strike lengths and arbitrary density contrast variations, Near Surf. Geophys. 11, 4, 363-370, DOI: 10.3997/1873-0604.2013001.
8 Chakravarthi, V., and N. Sundararajan (2007), Marquardt optimization of gravity anomalies of anticlinal and synclinal structures with prescribed depthdependent density, Geophys. Prospect. 55, 4, 571-587, DOI: 10.1111/ j.1365-2478.2007.00625.x.
9 Chappell, A.R., and N.J. Kusznir (2008), Three-dimensional gravity inversion for Moho depth at rifted continental margins incorporating a lithosphere thermal gravity anomaly correction, Geophys. J. Int. 174, 1, 1-13, DOI: 10.1111/j.1365-246X.2008.03803.x.
10 Cordell, L. (1973), Gravity analysis using an exponential density-depth function – San Jacinto Graben, California, Geophysics 38, 4, 684-690, DOI: 10.1190/1.1440367.
11 Cowie, P.A., and G.D. Karner (1990), Gravity effect of sediment compaction: examples from the North Sea and the Rhine Graben, Earth Planet. Sci. Lett. 99, 1-2, 141-153, DOI: 10.1016/0012-821X(90)90078-C.
12 Fett, J.D. (1968), Geophysical investigation of the San Jacinto Valley, Riverside County, California, M.Sc. Thesis, University of California, Riverside, USA, 87 pp.
13 Filon, L.N.G. (1928), On a quadrature formula for trigonometric integrals, Proc. Roy. Soc. Edinburgh 49, 1, 38-47.
14 García-Abdeslem, J. (1992), Gravitational attraction of a rectangular prism with depth-dependent density, Geophysics 57, 3, 470-473, DOI: 10.1190/ 1.1443261.
15 Gómez-Ortiz, D., R. Tejero-López, R. Babín-Vich, and A. Rivas-Ponce (2005), Crustal density structure in the Spanish Central System derived from gravity data analysis (Central Spain), Tectonophysics 403, 1-4, 131-149, DOI: 10.1016/j.tecto.2005.04.006.
16 Granser, H. (1987), Three-dimensional interpretation of gravity data from sedimentary basins using an exponential density-depth function, Geophys. Prospect. 35, 9, 1030-1041, DOI: 10.1111/j.1365-2478.1987.tb00858.x.
17 Guspi, F. (1990), General 2D gravity inversion with density contrast varying with depth, Geoexploration 26, 4, 253-265, DOI: 10.1016/0016-7142(90)90007-F.
18 Kadima, E., D. Delvaux, S.N. Sebagenzi, L. Tack, and S.M. Kabeya (2011), Structure and geological history of the Congo Basin: an integrated interpretation of gravity, magnetic and reflection seismic data, Basin Res. 23, 5, 499-527, DOI: 10.1111/j.1365-2117.2011.00500.x.
19 Mantlik, F., and M.J.S. Matias (2010), Interpretation and modeling of regional gravity data of the Aveiro Basin (Northwest Portugal), C. R. Geosci. 342, 11, 823-836, DOI: 10.1016/j.crte.2010.06.005.
20 Murthy, I.V.R., and D.B. Rao (1979), Gravity anomalies of two-dimensional bodies of irregular cross-section with density contrast varying with depth, Geophysics 44, 9, 1525-1530, DOI: 10.1190/1.1441023.
21 Murthy, I.V.R., and S.J. Rao (1989), A FORTRAN 77 program for inverting gravity anomalies of two-dimensional basement structures, Comput. Geosci. 15, 7, 1149-1156, DOI: 10.1016/0098-3004(89)90126-X. Northwest Geophysical Associates (2004), GM-SYS gravity/magnetic modeling software. User’s guide, Version 4.9, Northwest Geophysical Associates, Inc., Corvallis, USA, 101 pp.
22 Rao, C.V., V. Chakravarthi, and M.L. Raju (1994), Forward modelling: Gravity anomalies of two-dimensional bodies of arbitrary shape with hyperbolic and parabolic density functions, Comput. Geosci. 20, 5, 873-880, DOI: 10.1016/0098-3004(94)90118-X.
23 Rao, D.B., and C.P.V.N.J.M. Rao (1999), Two-dimensional interpretation of gravity anomalies over sedimentary basins with an exponential decrease of density contrast with depth, Proc. Indian Acad. Sci. (Earth Planet. Sci.) 108, 2, 99-106, DOI: 10.1007/BF02840488.
24 Rao, D.B., M.J. Prakash, and N.R. Babu (1993), Gravity interpretation using Fourier transforms and simple geometrical models with exponential density contrast, Geophysics 58, 8, 1074-1083, DOI: 10.1190/1.1443491.
25 Singh, B. (2002), Simultaneous computation of gravity and magnetic anomalies resulting from a 2-D object, Geophysics 67, 3, 801-806, DOI: 10.1190/ 1.1484524.
26 Won, I.J., and M. Bevis (1987), Computing the gravitational and magnetic anomalies due to a polygon: Algorithms and Fortran subroutines, Geophysics 52, 2, 232-238, DOI: 10.1190/1.1442298.
27 Zhou, X. (2013), Gravity inversion of 2D bedrock topography for heterogeneous sedimentary basins based on line integral and maximum difference reduction methods, Geophys. Prospect. 61, 1, 220-234, DOI: 10.111/j.1365-2478.2011.01046.x.
DOI :
Qute : Białecki, M. ,Bevis, M. ,Pan, E. ,Zhou, H. ,Han, F. ,Zhu, R. ,Sun, Q. ,Xue, L. ,Zhu, S. ,Hekmatian, M. E. ,Ardestani, V. E. ,Riahi, M. A. ,Bagh, A. M. K. ,Amini, J. ,Cheng, B. ,Xu, T. ,Robbins, B. ,Shen, Z. M. ,Toushmalani, R. ,Saibi, H. ,Chakravarthini, V. ,Ramamma, B. ,Ramamma, B. , Determination of Sedimentary Basin Basement Depth: A Space Domain Based Gravity Inversion using Exponential Density Function. Acta Geophysica Vol. 63, no. 4/2015
facebook