Determination of electromagnetic wave velocity in horizontally layered sedimentary target: A ground-penetrating radar study from Silurian limestones, Estonia

Czasopismo : Acta Geophysica
Tytuł artykułu : Determination of electromagnetic wave velocity in horizontally layered sedimentary target: A ground-penetrating radar study from Silurian limestones, Estonia

Autorzy :
Bogusz, J.
Centre of Applied Geomatics, Military University of Technology, jbogusz@wat.edu.pl,
Saibi, H.
Laboratory of Exploration Geophysics, Department of Earth Resources Engineering, Faculty of Engineering, Kyushu University, Fukuoka, Japan, saibi-hakim@mine.kyushu-u.ac.jp,
Verbanac, G.
University of Zagreb, Faculty of Science, Department of Geophysics, Zagreb, Croatia, verbanac@irb.hr,
Mustasaar, M.
Department of Geology, University of Tartu, Tartu, Estonia, mario.mustasaar@ut.ee,
Abstrakty : Ground-penetrating radar (GPR) is a non-destructive geophysical technique to obtain information about shallow subsurface by transmitting electromagnetic waves into the ground and registering signals reflected from objects or layers with different dielectric properties. The present GPR study was conducted in Vohmuta limestone quarry in Estonia in order to describe the relationship between GRP responses to the variations in petrophysical properties. Sub-horizontally oriented cores for petrophysical measurements were drilled from the side wall of the quarry. The GPR profiles were run at the sloped trench floor and on the top of side wall in order to correlate traceable reflections with physical properties. Based on three techniques: (i) hyperbola fitting, (ii) wide angle reflection and refraction (WARR), and (iii) topographic, a mean electromagnetic wave velocity value of 9.25 cm ns -1 (corresponding to relative dielectric permittivity of 10.5) was found to describe the sequence and was used for time-to-depth conversion. Examination of radar images against petrophysical properties revealed that major reflections appear in levels where the changes in porosity occur.

Słowa kluczowe : ground-penetrating radar, electromagnetic wave velocity, petrophysical properties, limestone, Estonia,
Wydawnictwo : Instytut Geofizyki PAN
Rocznik : 2012
Numer : Vol. 60, no. 2
Strony : 357 – 370
Bibliografia : Annan, A.P. (2005), GPR methods for hydrogeological studies. In: Y. Rubin, and S. Hubbard (eds.), Hydrogeophysics, Springer, New York, 185-213, DOI: 10.1007/1-4020-3102-5_7.
Davis, J.L., and A.P. Annan (1989), Ground-penetrating radar for high-resolution mapping of soil and rock stratigraphy, Geophys. Prospect. 37, 531-551, DOI: 10.1111/j.1365-2478.1989.tb02221.x.
Franseen, E.K., A.P. Byrnes, J. Xia, and R.D. Miller (2007), Improving resolution and understanding controls on GPR response in carbonate strata: implications for attribute analysis, Leading Edge 26, 984-993, DOI: 10.1190/1.2769554.
Hale, D. (1984), Dip-moveout by Fourier transform, Geophysics 49, 741-757, DOI: 10.1190/1.1441702.
Jarvis, A., H.I. Reuter, A. Nelson, and E. Guevara (2008), Hole-Filled Seamless SRTM Data V4: International Centre for Tropical Agriculture (CIAT): http//srtm.csi.cgiar.org, accessed: 31 December 2008.
Jõeleht, A., and I.T. Kukkonen (2002), Physical properties of Vendian to Devonian sedimentary rocks in Estonia, GFF 124, 65-72.
Kala, E., K. Tallinn, A. Räni, I. Randmaa, and E. Metsis (1993), Aruanne täiendavate geoloogiliste uuringute tulemuste kohta Võhmuta maardlal (Report on additional prospecting results on Võhmuta deposits), Geological Survey of Estonia, Keila, EGF 4670, 39 pp.
Knight, R. (2001), Ground penetrating radar for environmenatl applications, Ann. Rev. Earth Planet. Sci. 29, 229-255, DOI: 10.1146/annurev.earth.29.1.229.
Kruse, S.E., J.C. Schneider, D.J. Campagna, J.A. Inman, and T.D. Hickey (2000), Ground penetrating radar imaging of cap rock, caliche and carbonate strata, J. Appl. Geophys. 43, 239-249, DOI: 10.1016/S0926-9851(99)00062-2.
Neal, A. (2004), Ground-penetrating radar and its use in sedimentology: principles, problems and progress, Earth-Sci. Rev. 66, 261-330, DOI: 10.1016/j.earscirev.2004.01.004.
Olhoeft, G.R. (2000), Maximizing the information return from ground penetrating radar, J. Appl. Geophys. 43, 2-4, 175-187, DOI: 10.1016/S0926-9851(99)00057-9.
Railsback, L.B. (1999), Patterns in the compositions, properties, and geochemistry of carbonate minerals, Carbonate Evaporites 14, 1-20, DOI: 10.1007/BF03176144.
Robinson, D.A. (2004), Measurement of the solid dielectric permittivity of clay minerals and granular samples using a time domain reflectometry immersion method, Vadose Zone J. 3, 2, 705-713, DOI: 10.2113/3.2.705.
Shihab, S., W. Al-Nuaimy, and A. Eriksen (2004), Radius estimation for subsurface cylindrical objects detected by ground penetrating radar. In: E.C. Slob, A.G. Yarovoy, and J.B. Rhebergen (eds.), Proceedings of the Tenth International Conference on Ground Penetrating Radar, June 21-24, 2004, Delft, The Netherlands, 319-322.
Shutko, A., and E. Reutov (1982), Mixture formulas applied in estimation of dielectric and radiative characteristics of soils and grounds at microwave frequencies, IEEE Trans. Geosci. Remote Sens. 20, 29-32, DOI: 10.1109/TGRS.1982.4307516.
Slob, E., M. Sato, and G. Olhoeft (2010), Surface and borehole ground-penetratingradar developments, Geophysics 75, 103-120, DOI:10.1190/1.3480619.
Telford, W.M., L.P. Geldart, and R.E. Sheriff (1990), Applied Geophysics, Cambridge University Press, Cambridge.
Van Dam, R.L. (2001), Causes of Ground-Penetrating Radar Reflections in Sediment, Ph.D. Thesis, Vrije Universiteit, Faculty of Earth Sciences, Amsterdam.
ZH Instruments (2002), Magnetic susceptibility meter SM-30. User’s manual.
DOI :
Cytuj : Bogusz, J. ,Saibi, H. ,Verbanac, G. ,Mustasaar, M. , Determination of electromagnetic wave velocity in horizontally layered sedimentary target: A ground-penetrating radar study from Silurian limestones, Estonia. Acta Geophysica Vol. 60, no. 2/2012
facebook