Earthquakes, model systems and connections to q-statistics

Czasopismo : Acta Geophysica
Tytuł artykułu : Earthquakes, model systems and connections to q-statistics

Autorzy :
Vallianatos, F.
Technological Educational Institute of Crete, Laboratory of Geophysics and Seismology, Crete, Greece, fvallian@chania.teicrete.gr,
Tsallis, C.
Centro Brasileiro de Pesquisas Fisicas and National Institute of Science and Technology for Complex Systems, Rio de Janeiro, Brazil, tsallis@cbpf.br,
Sotolongo-Costa, O.
Catedra de Sistemas Complejos “Henri Poincare”, Universidad de La Habana, osotolongo@fisica.uh.cu,
Celikoglu, A.
Department of Physics, Faculty of Science, Ege University, Izmir, Turkey, ahmet.celikoglu@ege.edu.tr,
Abstrakty : In this work, we make an attempt to review some of the recent studies on earthquakes using either real catalogs or synthetic data coming from some model systems. A common feature of all these works is the use of q -statistics as a tool.

Słowa kluczowe : earthquake model, q-statistics, statistical mechanics,
Wydawnictwo : Instytut Geofizyki PAN
Rocznik : 2012
Numer : Vol. 60, no. 3
Strony : 535 – 546
Bibliografia : Abe, S. (2003), Geometry of escort distribution, Phys. Rev. E 68, 031101, DOI: 10.1103/PhysRevE.68.031101.
Abe, S., and N. Suzuki (2004), Aging and scaling of earthquake aftershocks, Physica A 332, 533-538, DOI: 10.1016/j.physa.2003.10.002.
Bath, M. (1965), Lateral inhomogeneities of upper mantle, Tectonophysics 2, 6, 483-514, DOI: 10.1016/0040-1951(65)90003-X.
Celikoglu, A., U. Tirnakli, and S.M.D. Queiros (2010), Analysis of return distributions in the coherent noise model, Phys. Rev. E 82, 021124, DOI: 10.1103/Phys-RevE.82.021124.
Christensen, K., and Z. Olami (1992), Scaling, phase transition, and nonuniversality in a self-organized critical cellular-automaton model, Phys. Rev. A 46, 4, 1829-1838, DOI: 10.1103/PhysRevA.46.1829.
Darooneh, A. H., and A. Mehri (2010), A nonextensive modification of the Gutenberg–Richter law: q-stretched exponential form, Physica A 389, 509-514, DOI: 10.1016/j.physa.2009.10.006.
Gutenberg, B., and C.F. Richter (1944), Frequency of earthquakes in California, Bull. Seismol. Soc. Am. 34, 185-188.
Kagan, Y.Y., and D.D. Jackson (1991), Seismic gap hypothesis: ten years after, J. Geophys. Res. 96, B13, 21419-21431, DOI: 10.1029/91JB02210.
Newman, M.E.J. (1996), Self-organized criticality, evolution and the fossil extinction record, Proc. R. Soc. London, Ser. B 263, 1605-1610, DOI: 10.1098/rspb.1996.0235.
Newman, M.E.J., and K. Sneppen (1996), Avalanches, scaling, and coherent noise, Phys. Rev. E 54, 6, 6226-6231, DOI: 10.1103/PhysRevE.54.6226.
Olami, Z., H.J.S. Feder, and K. Christensen (1992), Self-organized criticality in a continuous, nonconservative cellular automaton modeling earthquakes, Phys. Rev. Lett. 68, 1244-1248, DOI: 10.1103/PhysRevLett.68.1244.
Omori, F. (1894), On the aftershocks of earthquakes, J. Coll. Sci. Imp. Tokyo 7, 111-200.
Silva, R., G.S. Franca, and J.S. Vilar (2006), Nonextensive models for earthquakes, Phys. Rev. E 73, 026102, DOI: 10.1103/PhysRevE.73.026102.
Sneppen, K., and M.E.J. Newman (1997), Coherent noise, scale invariance and intermittency in large systems, Physica D 110, 209-222, DOI: 10.1016/S0167-2789(97)00128-0.
Sornette, D. (1999), Earthquakes: from chemical alteration to mechanical rupture, Phys. Rep. 313, 237-291, DOI: 10.1016/S0370-1573(98)00088-X.
Sotolongo-Costa, O., and A. Posadas (2004), Fragment-asperity interaction model for earthquakes, Phys. Rev. Lett. 92, 048501, DOI: 10.1103/Phys-RevLett.92.048501.
Tirnakli, U. (2004), Aging in earthquakes model. In: C. Beck, G. Benedeck, A. Rapisarda, and C. Tsallis (eds.), Complexity, Metastability and Nonextensivity. Proc. 31st Workshop of Int. School of Solid State Physics Erice, Sicily, Italy, 20-26 July 2004, World Scientific, Singapore, 350-354.
Tirnakli, U., and S. Abe (2004), Aging in coherent noise models and natural time, Phys. Rev. E 70, 056120, DOI: 10.1103/PhysRevE.70.056120.
Tsallis, C. (1988), Possible generalization of Boltzmann–Gibbs statistics, J. Stat. Phys. 52, 479-487, DOI: 10.1007/BF01016429.
Tsallis, C. (2009), Introduction to Nonextensive Statistical Mechanics–Approaching a Complex World, Springer, New York, DOI: 10.1007/987-0-387-85359-8.
Tsallis, C., and U. Tirnakli (2010), Nonadditive entropy and nonextensive statistical mechanics—Some central concepts and recent applications, J. Phys. Conf. Ser. 201, 012001, DOI: 10.1088/1742-6596/201/1/012001.
Tsallis, C., G. Bemski, and R.S. Mendes (1999), Is re-association in folded proteins a case of nonextensivity?, Phys. Lett. A 257, 93-98, DOI: 10.1016/S0375-9601(99)00270-4.
Turcotte, D.L. (1997), Fractals and Chaos in Geology and Geophysics, Cambridge University Press, Cambridge.
Vallianatos, F. (2009), A non-extensive approach to risk assessment, Nat. Hazards. Earth Syst. Sci. 9, 211-216, DOI: 10.5194/nhess-9-211-2009.
Vallianatos, F., and P. Sammonds (2010), Is plate tectonics a case of non-extensive thermodynamics? Physica A 389, 4989-4993, DOI: 10.1016/j.physa.2010.06.056.
Vallianatos, F., and P. Sammonds (2011), A non-extensive statistics of the faultpopulation at the Valles Marineris extensional province, Mars, Tectonophysics 509, 50-54, DOI: 10.1016/j.tecto.2011.06.001.
Zhang, G.Q., U. Tirnakli, L. Wang, and T.L. Chen (2011), Self organized criticality in a modified Olami-Feder-Christensen model, Eur. Phys. J. B 82, 83-89, DOI: 10.1140/epjb/e2011-10941-4.
DOI :
Cytuj : Vallianatos, F. ,Tsallis, C. ,Sotolongo-Costa, O. ,Celikoglu, A. , Earthquakes, model systems and connections to q-statistics. Acta Geophysica Vol. 60, no. 3/2012
facebook