Effect of Stress-Strain Conditions on Physical Precursors and Failure Stages Development in Rock Samples

Czasopismo : Acta Geophysica
Tytuł artykułu : Effect of Stress-Strain Conditions on Physical Precursors and Failure Stages Development in Rock Samples

Autorzy :
Karakostas, V.
Geophysics Department, Aristotle University of Thessaloniki, Thessaloniki, Greece, vkarak@geo.auth.gr,
Papadimitriou, E.
Geophysics Department, Aristotle University of Thessaloniki, Thessaloniki, Greece, ritsa@geo.auth.gr,
Mesimeri, M.
Geophysics Department, Aristotle University of Thessaloniki, Thessaloniki, Greece, mmesimer@geo.auth.gr,
Paradisopoulou, P.
Geophysics Department, Aristotle University of Thessaloniki, Thessaloniki, Greece, ppara@geo.auth.gr,
Gkarlaouni, Ch.
Geophysics Department, Aristotle University of Thessaloniki, Thessaloniki, Greece, hagarl@geo.auth.gr,
Trojanowski, J.
Institute of Geophysics, Polish Academy of Sciences, Warszawa, Poland, jtroj@igf.edu.pl,
Plesiewicz, B.
Institute of Geophysics, Polish Academy of Sciences, Warszawa, Poland,
Wiszniowski, J.
Institute of Geophysics, Polish Academy of Sciences, Warszawa, Poland,
Danek, T.
Department of Earth Sciences, Memorial University of Newfoundland, St. John’s, Canad,
Slawinski, M. A.
Department of Geoinformatics and Applied Computer Science, AGH – University of Science and Technology, Kraków, Poland,
Baddari, K.
Laboratory of Physics of the Earth UMBB, Boumerdes, Algeria / University of Bouira, Bouira, Algeria / Laboratory LIMOSE UMBB, Boumerdes, Algeria,
Frolov, A. D.
Geophysical Division NCG, Russian Academy of Sciences, Moscow, Russia,
Tourtchine, V.
Laboratory LIMOSE UMBB, Boumerdes, Algeria,
Rahmoune, F.
Laboratory LIMOSE UMBB, Boumerdes, Algeria,
Makdeche, S.
Laboratory LIMOSE UMBB, Boumerdes, Algeria,
Abstrakty : Precursory stages of failure development in large rock samples were studied and simultaneous observations of the space-time variation of several physical fields were carried out under different stress-strain states. The failure process was studied in detail. A hierarchical structure of discreet rock medium was obtained after loading. It was found that the moisture reduced the rock strength, increased the microcrack distribution and influenced the shape of the failure physical precursors. The rise in temperature up to 400 °C affected the physical precursors at the intermediate and final stages of the failure. Significant variations were detected in the acoustic and electromagnetic emissions. The coalescence criterion was slightly depending on the rock moisture and temperature effect. The possibility of identifying the precursory stage of failure at different strain conditions by means of a complex parameter derived from the convolution of physical recorded data is shown. The obtained results point out the efficiency of the laboratory modelling of seismic processes.

Słowa kluczowe : stress-strain conditions, failure, physical precursor, rock samples,
Wydawnictwo : Instytut Geofizyki PAN
Rocznik : 2015
Numer : Vol. 63, no. 1
Strony : 62 – 102
Bibliografia : 1 Adushkin, V.V., and S.B. Turuntaev (2005), Anthropogenic processes in the earth’s
crust. In: Risks and Catastrophes, INEK, Moscow.
2 Althaus, E., A. Friz-Töpfer, Ch. Lempp, and O. Natau (1994), Effects of water on strength and failure mode of coarse-grained granites at 300 °C, Rock Mech. Rock Eng. 27, 1, 1-21, DOI: 10.1007/BF01025953.
3 Ammon, Ch.J., H. Kanamori, and Th. Lay (2008), A great earthquake doublet and seismic stress transfer cycle in the central Kuril islands, Nature 451, 561-565, DOI: 10.1038/nature06521.
4 Asatryan, Kh.O., G.A. Sobolev, and V.A Mansurov (1993), Development of block hierarchy and acoustic emission in rock at all-sided compression. In: Modeling of the Seismic Process and Earthquake Precursors, Vol. 1, RAS, 17-20 (in Russian).
5 Atkinson, B.K., and P.G. Meridith (1987), Experimental fracture mechanics data for rocks and minerals. In: B.K. Atkinson (ed.), Fracture Mechanics of Rock, Academic Press, San Diego, CA, 477-525.
6 Baddari, K., and A.D. Frolov (1990), Influence of temperature on physical precursors of rock failure, Izv. Geol. Prospect. 9, 102-108 (in Russian).
7 Baddari, K., and A.D. Frolov (2010), Regularities in discrete hierarchy seismoacoustic mode in a geophysical field, Ann. Geophys.-Italy 53, 5-6, 31-42, DOI: 10.4401/ag.4725.
8 Baddari, K., G.A. Sobolev, and A.D. Frolov (1996), Similarity in seismic precursors at different scales, CR Acad. Sci. II A 323, 755-763.
9 Baddari, K., G.A. Sobolev, A.D. Frolov, and A.V. Ponomarev (1999), An integrated study of physical precursors of failure in relation to earthquake prediction, using large scale rock blocks, Ann. Geophys.-Italy 42, 5, 771-787.
11 Baddari, K., A.D. Frolov, V. Tourtchine, and F. Rahmoune (2011), An integrated study of the dynamics of electromagnetic and acoustic regimes during failure of complex macrosystems using rock blocks, Rock Mech. Rock Eng. 44, 3, 269-280, DOI: 10.1007/s00603-010-0130-5.
12 Baddari, K., A.D. Frolov, V. Tourtchine, S. Makdeche, and F. Rahmoune (2012), Effect of temperature on physical precursors of block rock failure, Acta Geophys. 60, 4, 1007-1029, DOI: 10.2478/s11600-012-0038-4.
13 Bahat, D., A. Rabinovitch, and V. Frid (2005), Tensile Fracturing in Rocks: Tectonofractographic and Electromagnetic Radiation Methods, Springer Verlag, Berlin.
14 Beeler, N.M. (2004), Review of the physical basis of laboratory-derived relations for brittle failure and their implications for earthquake occurrence and earthquake nucleation, Pure Appl. Geophys. 161, 9-10, 1853-1876, DOI:10.1007/s00024-004-2536-z.
15 Benson, P.M., B.D. Thompson, P.G. Meredith, S. Vinciguerra, and R.P. Young (2007), Imaging slow failure in triaxially deformed Etna basalt using 3D acoustic-emission location and X-ray computed tomography, Geophys. Res. Lett. 34, 3, DOI: 10.1029/2006GL028721.
16 Bizzarri, A., and M. Cocco (2006), A thermal pressurization model for spontaneous dynamic rupture propagation on a three-dimensional fault: 2. Traction evolution and dynamic parameters, J. Geophys. Res. 111, B05304, DOI:10.1029/2005JB003864.
17 Brace, W.F., and D.L. Kohlstedt (1980), Limits on lithospheric stress imposed by laboratory experiments, J. Geophys. Res. 85, B11, 6248-6552, DOI:10.1029/JB085iB11p06248.
18 Cai, M., and D. Liu (2009), Study of failure mechanism of rock under compressiveshear loading using real-time laser holography, Int. J. Rock Mech. Min. 46, 1, 59-68, DOI: 10.1016/j.ijrmms.2008.03.010.
19 Chen, F., D.Y. Chen, Q.-P. Cao, S.-J. Yu, D.-J. Xu, C.-X. Chen, Y.-L. Yu, and J.-H. Sheng (1993), Study on the property of apparent resistivity changes of rock samples by in situ shear and friction test, Acta Seismol. Sinica 6, 3, 721-279, DOI: 10.1007/BF02650411.
20 Corrêa, C.C., and R.S.V. Nascimento (2005), Study of shale-fluid interactions using thermogravimetry, J. Therm. Anal. Calorim. 79, 2, 295-298, DOI:10.1007/s10973-005-0052-8.
21 Darot, M., and T. Reuschlé (2000), Acoustic wave velocity and permeability evolution during pressure cycles on a thermally cracked granite, Int. J. Rock Mech. Min. 37, 7, 1019-1026, DOI: 10.1016/S1365-1609(00)00034-4.
22 David, C., B. Menéndez, and M. Darot (1999), Influence of stress-induced and thermal cracking on physical properties and microstructure of La Peyratte granite, Int. J. Rock Mech. Min. 36, 4, 433-448, DOI:10.1016/S0148-9062(99)00010-8.
23 Dresen, G., S. Stanchits, and E. Rybacki (2010), Borehole breakout evolution through acoustic emission location analysis, Int. J. Rock Mech. Min. 47, 3, 426-435, DOI: 10.1016/j.ijrmms.2009.12.010.
24 Evans, K.F. (2005), Permeability creation and damage due to massive fluid injections into granite at 3.5 km at Soultz: 2. Critical stress and fracture strength, J. Geophys. Res. 110, B4, DOI: 10.1029/2004JB003169.
25 Fortin, J., S. Stanchits, S. Vinciguerra, and Y. Guéguen (2011), Influence of thermal and mechanical cracks on permeability and elastic wave velocities in a basalt from Mt. Etna volcano subjected to elevated pressure, Tectonophysics 503, 60-74, DOI: 10.1016/j.tecto.2010.09.028.
26 Frid, V., A. Rabinovitch, and D. Bahat (2003), Fracture induced electromagnetic radiation, J. Phys. D. Appl. Phys. 36, 13, 1620-1628, DOI: 10.1088/0022-3727/36/13/330.
27 Glover, P.W.J., J.B. Gomez, P.G. Meredith, S.A. Boon, P.R. Sammonds, and S.A.F. Murrell (1996), Modelling the stress-strain behaviour of saturated rocks undergoing triaxial deformation using complex electrical conductivity measurements, Surv. Geophys. 17, 3, 307-330, DOI: 10.1007/BF01904046.
28 Gupta, H.K. (2005), Artificial water reservoir-triggered earthquake with special emphasis at Koyna, Curr. Sci. India 88, 10, 1628-1631.
29 Heap, M.G., S. Vinciguerra, and P.G. Meredith (2009), The evolution of elastic moduli with increasing crack damage during cyclic- stressing of basalt from Mt. Etna volcano, Tectonophysics 471, 1-2, 153-160, DOI: 10.1016/j.tecto.2008.10.004.
30 Heap, M.J., P. Baud, P.G. Meredith, S. Vinciguerra, A.F. Bell, and I.G. Main (2011), Brittle creep in basalt and its application to time-dependent volcano deformation, Earth Planet. Sci. Lett. 307, 1-2, 71-82, DOI: 10.1016/j.epsl.2011.04.035.
31 Jouniaux, L., K. Masuda, X. Lei, O. Nishizawa, K. Kusunose, L. Liu, and W. Ma (2001), Comparison of the microfracture localization in granite between fracturation and slip of a preexisting macroscopic healed joint by acoustic emission measurements, J. Geophys. Res. 106, B5, 8687-8698, DOI:10.1029/2000JB900411.
32 Jouniaux, L., M. Zamora, and T. Reuschlé (2006), Electrical conductivity evolution of non-saturated carbonate rocks during deformation up to failure, Geophys. J. Int. 167, 2, 1017-1026, DOI: 10.1111/j.1365-246X.2006.03136.x.
33 Kadomtsev, A.G., E.E. Damaskinskaya, and V.S. Kuksenko (2011), Fracture features of granite under various deformation conditions, Phys Solid State 53, 9, 1876-1881, DOI: 10.1134/S1063783411090150.
34 Kuksenko, V.S. (2005), Diagnostic and forecasting of breakage of large-scale objects, Phys. Solid State 45, 5, 812-816, DOI: 10.1134/1.1924837.
35 Kuksenko,V.S., Kh.F. Makhmudov, V.A. Mansurov, U. Sultonov, and M.Z. Rustamova (2009), Changes in structure of natural heterogeneous materials under deformation, J. Min. Sci. 45, 4, 355-358, DOI: 10.1007/s10913-009-0044-3.
36 Kuksenko, V.S., E.E. Damaskinskaya, and G. Kadomtsev (2011), Fracture of granite under various strain conditions, Izv. Phys. Solid Earth 47, 10, 879-885, DOI: 10.1134/S1069351311100053.
37 Lacidogna, G., A. Carpinteri, A. Manuello, G. Durin, A. Schiavi, G. Niccolini, and A. Agosto (2011), Acoustic and electromagnetic emissions as precursor phenomena in failure processes, Strain 47, Suppl. s2, 144-152, DOI:10.1111/j.1475-1305.2010.00750.x.
38 Lavrov, A.V., and V.L. Shkuratnik (2005), Deformation- and fracture-induced acoustic emission in rocks, Acoust. Phys. 51, Suppl. 1, 2-11, DOI: 10.1134/1.2133948.
39 Lockner, D. (1993), The role of acoustic emission in the study of rock, Int. J. Rock Mech. Min. 30, 7, 883-899, DOI: 10.1016/0148-9062(93)90041-B.
40 Lockner, D.A., and J.D. Byerlee (1986), Changes in complex resistivity during creep in granite, Pure Appl. Geophys. 124, 4-5, 659-676, DOI: 10.1007/BF00879603.
41 Lockner, D.A., and S.A. Stanchits (2002), Undrained poroelastic response of sandstones to deviatoric stress change, J. Geophys. Res. 107, B12, 2553, DOI:10.1029/2001JB001460.
42 Lockner, D.A., J.D. Byerlee, V.S. Kuksenko, and A.V. Ponomarev (1986), Stick slip, charge separation and decay, Pure Appl. Geophys. 124, 3, 601-608, DOI: 10.1007/BF00877218.
43 Lockner, D.A., J.D. Byerlee, V.S. Kuksenko, A. Ponomarev, and A. Sidorin (1991), Quasi-static fault growth and shear fracture energy in granite, Nature 350, 6313, 39-42, DOI: 10.1038/350039a0.
44 Panin, V.E. (1985), Structural Levels of Solid Bodies’ Deformation, Nauka, Novosibirsk (in Russian).
45 Ponomarev, A.V. (1987), The study of variations in the electrical state of rocks as applied to the search for earthquake precursors, Ph.D. Thesis, Moscow (in Russian).
46 Ponomarev, A.V., A.D. Zavyalov, V.B. Smirnov, and D.A. Lockner (1997), Physical modelling of the formation and evolution of seismically active fault zones, Tecnophysics 277, 57-81, DOI: 10.1016/S0040-1951(97)00078-4.
47 Pozzi, J.-P., and L. Jouniaux (1994), Electrical effects of fluid circulation in sediments and seismic prediction, CR Acad. Sci. II A 318, 1, 73-77.
48 Reuschlé, T., S.G. Haore, and M. Darot (2006), The effect of heating on the microstructural evolution of La Peyratte granite deduced from acoustic velocity measurements, Earth Planet. Sci. Lett. 243, 3-4, 692-700, DOI: 10.1016/j.epsl.2006.01.038.
49 Rudajev, V., J. Vilhelm, J. Kozák, and T. Lokajíček (1996), Statistical precursors of instability of loading rock samples based on acoustic emission, Int. J. Rock Mech. Min. 33, 7, 743-748, DOI: 10.1016/0148-9062(96)00023-X.
50 Sadovsky, M.A., L.G. Bolkhovitinov, and V.F. Pisarenko (1991), Deformation of the Geophysical Medium and Seismic Process, Nauka, Moscow (in Russian).
51 Schubnel, A., and Y. Guéguen (2003), Dispersion and anisotropy of elastic waves in cracked rocks, J. Geophys. Res. 108, B2, 1978-2012, DOI: 10.1029/2002JB001824.
52 Schubnel, A., B.D. Thompson, J. Fortin, Y. Guéguen, and R.P. Young (2007), Fluid induced rupture experiment on Fontainebleau sandstone: Premonitory activity, rupture propagation, and aftershocks, Geophys. Res. Lett. 34, 19, DOI:10.1029/2007GL031076.
53 Shearer, P.M. (1999), Introduction to Seismology, Cambridge Univ. Press, Cambridge.
54 Simpson, D.W., W.S. Leith, and C.H. Sholz (1988), Two types of reservoir- induced seismicity, Bull. Seismol. Soc. Am. 78, 6, 2025-2040.
55 Smirnov, V.B., and A.V. Ponomarev (2004), Seismic regime relaxation properties from in situ and laboratory data, Izv. Phys. Solid Earth 40, 10, 807-816.
56 Smirnov, V.B., A.V. Ponomarev, and A.D. Zavyalov (1995), Acoustic structure in rock samples and the seismic process, Izv. Phys. Solid Earth 31, 1, 38-58.
57 Smirnov, V.B., A.V. Ponomarev, P. Bernard, and A.V. Patonin (2010), Regularities in transient modes in the seismic process according to the laboratory and natural modelling, Izv. Phys. Solid Earth 46, 2, 104-135, DOI:10.1134/S1069351310020023.
58 Sobolev, G.A. (1995), Fundamental of Earthquake Prediction, ERC, Moscow.
59 Sobolev G.A., and A.V. Ponomarev (2003), Physics of Earthquakes and Precursors, Nauka, Moscow (in Russian).
60 Sobolev, G.A., and A.V. Ponomarev (2011), Dynamics of fluid-triggered fracturing in the modeles of a geological medium, Izv. Phys. Solid Earth 47, 10, 902-918, DOI: 10.1134/S1069351311100119.
61 Sobolev, G.A., A.V Ponomarev, Yu.Ya. Maibuk, N.A. Zakrzhevskaya, V.I. Ponyatovskaya, D.G. Sobolev, A.A. Khromov, and Yu.V. Tsyvinskaya (2010), The dynamics of the acoustic emission with water initiation, Izv. Phys. Solid Earth 46, 2, 136-153, DOI: 10.1134/S1069351310020035.
62 Soloviev, S.P., and A.A. Spivak (2009), Electromagnetic signals generated by the electric polarization during the constrained deformation of rocks, Izv. Phys. Solid Earth 45, 4, 347-355, DOI: 10.1134/S1069351309040077.
63 Stanchits, S.A., D.A. Lockner, and A.V. Ponomarev (2003), Anisotropic changes in P wave velocity and attenuation during deformation and fluid infiltration of granite, Bull. Seismol. Soc. Am. 93, 4, 1803-1822, DOI: 10.1785/0120020101.
64 Stopiński, W., A.V. Ponomaryov, and V. Los (1991), The dynamics of rupture in porous media, Pure Appl. Geophys. 136, 1, 29-47, DOI: 10.1007/BF00878886.
65 Terzaghi, K. (1925), Principles of Soil Mechanics: A Summary of Experimental Studies of Clay and Sand, McGraw-Hill, New York.
66 Thompson, B.D., R.P. Young, and D.A. Lockner (2006), Fracture in Westerly granite under AE feedback and constant strain rate loading: Nucleation, quasistatic propagation, and the transition to unstable fracture propagation, Pure Appl. Geophys. 163, 5-6, 995-1019, DOI: 10.1007/s00024-006-0054-x.
67 Vinciguerra, S., C. Trovato, P.G. Meredith, and P.M. Benson (2005), Relating seismic velocities, thermal cracking and permeability in Mt. Etna and Iceland basalts, Int. J. Rock Mech. Min. 42, 7-8, 900-910, DOI: 10.1016/j.ijrmms.2005.05.022.
68 Wan, Z.J., Y.S. Zhao, Y. Zhang, and C. Wang (2009), Research status quo and prospection of mechanical characteristics of rock under high temperature and high pressure, Procedia Earth Planet. Sci. 1, 1, 565-570, DOI:10.1016/j.proeps.2009.09.090.
69 Xu, X.L., F. Gao, X.M. Shen, and H.P. Xie (2008), Mechanical characteristics and microcosmic mechanisms of granite under temperature loads, J. China Univ. Min. Technol. 18, 3, 413-417.
70 Zang, A., F.C. Wagner, S. Stanchits, Ch. Janssen, and G. Dresen (2000), Fracture process zone in granite, J. Geophys. Res. 105, B10, 23651-23661, DOI:10.1029/2000JB900239.
71 Zavyalov, A.D. (2006), Intermediate Term Earthquake Prediction, Nauka, Moscow.
72 Zhang, L.Y., X.B. Mao, and A.H. Lu (2009), Experimental study of the mechanical properties of rocks at high temperature, Sci. China Ser. E 52, 3, 641-646,DOI: 10.1007/s11431-009-0063-y.
73 Zhurkov, S.N. (1984), Kinetic concept of the strength of solids, Int. J. Fract. Mech. 26, 4, 295-307, DOI: 10.1007/BF00962961.
74 Zhurkov, S.N., V.S. Kuksenko, V.A. Petrov, V.N. Savelev, and U.S. Sultanov (1980), Concentration criterion of rock volume fracture. In: Physical Processes in Earthquake Sources, Nauka, Moscow, 78-86 (in Russian).
75 Utsu, T. (2002), Statistical features of seismicity. In: W.H.K. Lee, H. Kanamori, P.C. Jennings, and C. Kisslinger (eds.), International Handbook of Earthquake and Engineering Seismology, Part A, Academic Press, San Diego, 719-732, DOI: 10.1016/S0074-6142(02)80246-7.
76 Utsu, T., Y. Ogata, and R.S. Matsu’ura (1995), The centenary of the Omori formula for decay law of afterschock activity, J. Phys. Earth 43, 1-33, DOI:10.4294/jpe1952.43.1.
Cytuj : Karakostas, V. ,Papadimitriou, E. ,Mesimeri, M. ,Paradisopoulou, P. ,Gkarlaouni, Ch. ,Trojanowski, J. ,Plesiewicz, B. ,Wiszniowski, J. ,Danek, T. ,Slawinski, M. A. ,Baddari, K. ,Frolov, A. D. ,Tourtchine, V. ,Rahmoune, F. ,Makdeche, S. , Effect of Stress-Strain Conditions on Physical Precursors and Failure Stages Development in Rock Samples. Acta Geophysica Vol. 63, no. 1/2015