Journal : Acta Geophysica
Article : Estimating thermal conductivity from core and well log data

Authors :
Tsoulis, D.
Department of Geodesy and Surveying, Aristotle University of Thessaloniki, Thessaloniki, Greece, tsoulis@auth.gr,
Patlakis, K.
Department of Geodesy and Surveying, Aristotle University of Thessaloniki, Thessaloniki, Greece,
Ansari, A.
Department of Applied Geophysics, Indian School of Mines, Dhanbad, India,
Khan, P.
Department of Applied Geophysics, Indian School of Mines, Dhanbad, India, pkkhan_india@yahoo.com,
Rehman, S.
1National Seismic Monitoring Center, Pakistan Meteorological Department, Islamabad, Pakistan, srltp@yahoo.com,
Lindholm, C.
Norwegian Seismic Array, NORSAR, Kjeller, Norway,
Ahmed, N.
Pakistan Meteorological Department, Islamabad, Pakistan,
Rafi, Z.
Pakistan Meteorological Department, Islamabad, Pakistan,
Erbek, E.
Department of Geophysical Engineering, Suleyman Demirel University, Isparta, Turkey, ezgierbek@sdu.edu.tr,
Dolmaz, M.
Department of Geophysical Engineering, Suleyman Demirel University, Isparta, Turkey, nuridolmaz@sdu.edu.tr,
Gąsior, I.
Oil and Gas Institute, Kraków, Poland, gasior@inig.pl,
Przelaskowska, A.
Oil and Gas Institute, Kraków, Poland, przelaskowska@inig.pl,
Abstract : The aim of the presented work was to introduce a method of estimating thermal conductivity using well log data. Many petrophysical properties of rocks can be determined both by laboratory measurements and well-logs. It is thus possible to apply geophysical data to empirical models based on relationships between laboratory measured parameters and derive continuous thermal conductivity values in well profiles. Laboratory measurements were conducted on 62 core samples of Meso- Paleozoic rocks from the Carpathian Foredeep. Mathematical models were derived using multiple regression and neural network methods. Geophysical data from a set of seven well logs: density, sonic, neutron, gamma ray, spectral gamma ray, caliper and resistivity were applied to the obtained models. Continuous thermal conductivity values were derived in three well profiles. Analysis of the obtained results shows good consistence between laboratory data and values predicted from well log data.

Keywords : przewodność cieplna, geofizyka wiertnicza, regresja wieloczynnikowa, sieci neuronowe, thermal conductivity, well logs, multiple regression, neural networks,
Publishing house : Instytut Geofizyki PAN
Publication date : 2014
Number : Vol. 62, no. 4
Page : 785 – 801

Bibliography
: 1.Brigaud, F., D.S. Chapman., and S. Le Douaran (1990), Estimating thermal conductivity in sedimentary basins using lithologic data and geophysical well logs, Am. Assoc. Petr. Geol. Bull. 74, 9, 1459-1477.
2.Doveton, J.H., A. Förster, and D.F. Merriam (1997), Predicting thermal conductivity from petrophysical logs: a Midcontinent Paleozoic case study. In: V. Pawlowski-Glahn (ed.), Proc. Int. Association for Mathematical Geology ’97, Part 1, International Centre for Numerical Methods in Engineering, Barcelona, Spain, 212-217.
3.Evans, T.R. (1977), Thermal properties of North Sea rocks, The Log Analyst 18, 2, 3-12.
4.Gąsior, I., and A. Przelaskowska (2006), Assessment of thermal conductivity on the basis of geophysical well logs, Nafta Gaz 62, 5, 217-221 (in Polish).
5.Gąsior, I., and A. Przelaskowska (2008), Assessment of thermal conductivity coefficient on the basis of well logs and geophysical profiling in the Carpathian flysh formations, Nafta Gaz 64, 7, 438-445 (in Polish).
6.Gąsior, I., and A. Przelaskowska (2010), Characterization of thermal parameters of Meso-Paleozoic rocks from the Tarnów-Dębica area, Nafta Gaz 66, 8, 663-667 (in Polish).
7.Gegenhuber, N., and J. Schoen (2012), New approaches for the relationship between compressional wave velocity and thermal conductivity, J. Appl. Geophys. 76, 50-55, DOI: 10.1016/j.jappgeo.2011.10.005.
8.Goss, R., J. Combs, and A. Timur (1975), Prediction of thermal conductivity in rocks from other physical parameters and from standard geophysical well logs. In: Trans. SPWLA 16th Ann. Logging Symposium, Society of Professional Well Log Analysts, 16, 1-21.
9.Goutorbe, B., F. Lucazeau, and A. Bonneville (2006), Using neural networks to predict thermal conductivity from geophysical well logs, Geophys. J. Int. 166, 1, 115-125, DOI: 10.1111/j.1365-246X.2006.02924x.
10.Hartmann, A., V. Rath, and C. Clauser (2005), Thermal conductivity from core and well log data, Int. J. Rock Mech. Min. Sci. 42, 7-8, 1042-1055, DOI:10.1016/j.ijrmms.2005.05.015.
11.Midttomme, K., E. Roaldset, and P. Aagaard (1998), Thermal conductivity of selected claystones and mudstones from England, Clay Miner. 33, 1, 131-145, DOI: 10.1180/000985598545327.
12.Plewa, M., and S. Plewa (1992), Petrofizyka (Petrophysics), Wyd. Geol., Warszawa (in Polish).
13.Popov, Y., V. Tertychnyi , R. Romushkevich, D. Korobkov , and J. Pohl (2003), Interrelations between thermal conductivity and other physical properties of rocks: Experimental data, Pure Appl. Geophys. 160, 1137-1161, DOI: 10.1007/978-3-0348-8083-1_21.
14.Szewczyk, J. (2001), Estimation of the heat-flow density using thermal parameter modeling, Prz. Geol. 49, 11, 1083-1088.
15.Vacquier, V., Y. Mathieu, E. Legendre, and E. Blondin (1988), Experiment on estimating thermal conductivity of sedimentary rocks from oil well logging, Am. Assoc. Petrol. Geol. Bull. 72, 6, 758-764.
DOI :
Qute : Tsoulis, D. ,Patlakis, K. ,Ansari, A. ,Khan, P. ,Rehman, S. ,Lindholm, C. ,Ahmed, N. ,Rafi, Z. ,Erbek, E. ,Dolmaz, M. ,Gąsior, I. ,Przelaskowska, A. ,Przelaskowska, A. , Estimating thermal conductivity from core and well log data. Acta Geophysica Vol. 62, no. 4/2014
Facebook