Estimation of Apollo Lunar Dust Transport using Optical Extinction Measurements

Czasopismo : Acta Geophysica
Tytuł artykułu : Estimation of Apollo Lunar Dust Transport using Optical Extinction Measurements

Autorzy :
Namvaran, M.
Kerman Graduate University of Technology, Geophysics Department, Kerman, Iran, m.namvaran@kgut.ac.ir,
Negarestni, A.
Kerman Graduate University of Technology, Electrical Engineering Department, Kerman, Iran, a.negarestani@kgut.ac.ir,
Grad, M.
Institute of Geophysics, Faculty of Physics, University of Warsaw, Warsaw, Poland, mgrad@mimuw.edu.pl,
Polkowski, M.
Institute of Geophysics, Faculty of Physics, University of Warsaw, Warsaw, Poland,
Wilde-Piórko, M.
Institute of Geophysics, Faculty of Physics, University of Warsaw, Warsaw, Poland,
Suchcicki, J.
Institute of Geophysics, Polish Academy of Sciences, Warsaw, Poland,
Arant, T.
Institute of Geophysics, Polish Academy of Sciences, Warsaw, Poland,
Teisseyre, R.
Institute of Geophysics, Polish Academy of Sciences, Warszawa, Poland, rt@igf.edu.pl,
Moilanen, J.
Lomonosov Moscow State University, Moscow, Russia, moilanen@mail.ru,
Pushkarev, P.Yu.
Lomonosov Moscow State University, Moscow, Russia, pavel_pushkarev@list.ru,
Sas, W.
Faculty of Civil- and Environmental Engineering, Warsaw University of Life Sciences (SGGW), Warsaw, Poland, wojciech_sas@sggw.pl,
Gabryś, K.
Faculty of Civil- and Environmental Engineering, Warsaw University of Life Sciences (SGGW), Warsaw, Poland, katarzyna_gabrys@sggw.pl,
Szymański, A.
Faculty of Civil- and Environmental Engineering, Warsaw University of Life Sciences (SGGW), Warsaw, Poland, ajozy_szymanski@sggw.pl,
Oliviera, S. D. S.
Faculty of Geophysics, Federal University of Para, Belem, Brazil; Faculty of Meteorology, Federal University of Para, Belem, Brazil , frasol@ufpa.br,
Figueredo, J. J. S.
Geoprocessados, Virlemosa, Mexico, lucas.batista.freitas@gmail.com,
Li, Ch.
School of Computer Engineering and Science, Shanghai University, Shanghai, China,
Dai, Y.
School of Computer Engineering and Science, Shanghai University, Shanghai, China,
Zhao, J.
School of Computer Engineering and Science, Shanghai University, Shanghai, China,
Zhou, S.
School of Computer Engineering and Science, Shanghai University, Shanghai, China,
Yin, J.
School of Computer Engineering and Science, Shanghai University, Shanghai, China,
Xue, D.
School of Computer Engineering and Science, Shanghai University, Shanghai, China,
Wu, W.
State Key Laboratory of Petroleum Resource and Prospecting, China University of Petroleum, Beijing, China, wwsheng@cup.edu.cn,
Niu, W.
State Key Laboratory of Petroleum Resource and Prospecting, China University of Petroleum, Beijing, China,
Tong, D.
Daqing Drilling Corporation, PetroChina, Daqing, China,
Luo, L.
CCDC Well Logging Company, Chongqing, China,
Zhang, R.
Department of Civil Engineering, North China Institute of Science and Technology, Sanhe-Hebei, China, zhangruihongw@163.com,
Zhang, L.
Department of Civil Engineering, North China Institute of Science and Technology, Sanhe-Hebei, China, zhanglihua@ncist.edu.cn,
Kaczmarek, L. M.
University of Technology, Department of Geotechnics, Koszalin, Poland, leszek.kaczmarek@tu.koszalin.pl,
Sawczyński, Sz.
University of Warmia and Mazury, Department of Mechanics and Civil Engineering Constructions, Olsztyn, Poland, sz.sawczynski@uwm.edu.pl,
Biegowski, J.
Polish Academy of Sciences, Institute of Hydroengineering, Gdańsk, Poland, jarbieg@ibwpan.gda.pl,
Kozioł, A.
Faculty of Civil and Environmental Engineering, Warsaw University of Life Sciences, Warszawa, Poland, adam_koziol@sggw.pl,
Pierini, J. O.
Centro Científico y Tecnológico de Bahía Blanca (CCT-BB, CIC, UNS), CRIBABB, Bahía Blanca, Argentina, jpierini@criba.edu.ar,
Restrepo, J. C.
Grupo de Física Aplicada: Océano y Atmósfera, Departamento de Fisica, Universidad del Norte, Barranquilla, Colombia,
Lovallo, M.
Agenzia Regionale per la Protezione dell'Ambiente di Basilicata (ARPAB), Potenza, Italy,
Telesca, L.
National Research Council of Italy, Institute of Methodologies for Environmental Analysis (CNR-IMAA), Tito, Italy,
Lewiński, S.
Space Research Centre, Polish Academy of Sciences, Warszawa, Poland,
Aleksandrowicz, S.
Space Research Centre, Polish Academy of Sciences, Warszawa, Poland, saleksandrowicz@cbk.waw.pl,
Banaszkiewicz, M.
Space Research Centre, Polish Academy of Sciences, Warszawa, Poland, marekb@cbk.waw.pl,
Lane, J. E.
Easi-ESC, Granular Mechanics and Regolith Operations, Kennedy Space Center, FL, USA, john.e.lane@nasa.gov,
Metzgert, P. T.
NASA Granular Mechanics and Regolith Operations, Kennedy Space Center, FL, USA Florida Space Institute, University of Central Florida, Orlando, FL, USA , Philip.Metzger@ucf.edu,
Abstrakty : A technique to estimate mass erosion rate of surface soil during landing of the Apollo Lunar Module (LM) and total mass ejected due to the rocket plume interaction is proposed and tested. The erosion rate is proportional to the product of the second moment of the lofted particle size distribution N(D), and third moment of the normalized soil size distribution S(D), divided by the integral of S(D)⋅D2/v(D), where D is particle diameter and v(D) is the vertical component of particle velocity. The second moment of N(D) is estimated by optical extinction analysis of the Apollo cockpit video. Because of the similarity between mass erosion rate of soil as measured by optical extinction and rainfall rate as measured by radar reflectivity, traditional NWS radar/rainfall correlation methodology can be applied to the lunar soil case where various S(D) models are assumed corresponding to specific lunar sites.

Słowa kluczowe : Mie scattering, efficiency factor for extinction, particle size distribution, mass erosion rate, shear stress, shape factor,
Wydawnictwo : Instytut Geofizyki PAN
Rocznik : 2015
Numer : Vol. 63, no. 2
Strony : 568 – 599
Bibliografia : 1 Atlas, D. (1953), Optical extinction by rainfall, J. Meteor. 10, 6, 486-488, DOI: 10.1175/1520-0469(1953)010<0486:OEBR>2.0.CO;2.
2 Berg, M.J., C.M. Sorensen, and A. Chakrabarti (2011), A new explanation of the extinction paradox, J. Quant. Spectrosc. Rad. Trans. 112, 7, 1170-1181, DOI:10.1016/j.jqsrt.2010.08.024.
3 Berger, K.J., A. Anand, P.T. Metzger, and C.M. Hrenya (2013), Role of collisions in erosion of regolith during a lunar landing, Phys. Rev. E 87, 2, 022205, DOI:10.1103/PhysRevE.87.022205.
4 Clegg, R.N., B.L. Jolliff, M.S. Robinson, B.W. Hapke, and J.B. Plescia (2014), Effects of rocket exhaust on lunar soil reflectance properties, Icarus 227, 1,176-194, DOI:10.1016/j.icarus.2013.09.013.
5 Haehnel, R., and W.B. Dade (2008), Physics of particle entrainment under the influence of an impinging jet. In: Proc. 26th Army Science Conference, U.S. Army, Orlando, USA.
6 Immer, C., P. Metzger, P.E. Hintze, A. Nick, and R. Horan (2011a), Apollo 12 Lunar Module exhaust plume impingement on Lunar Surveyor III, Icarus 211, 2, 1089-1102, DOI: 10.1016/j.icarus.2010.11.013.
7 Immer, C., J. Lane, P. Metzger, and S. Clements (2011b), Apollo video photogrammetry estimation of plume impingement effects, Icarus 214, 1, 46-52, DOI:10.1016/j.icarus.2011.04.018.
8 Lane, J.E., and P.T. Metzger (2014a), Image analysis based estimates of regolith erosion due to plume impingement effects. In: Proc. 14th ASCE Int. Conf. Engineering, Science, Construction and Operations in Challenging Environments “Earth and Space 2014”, 27-29 October 2014, St. Louis, USA.
9 Lane, J.E., P.T. Metzger, and J.W. Carlson (2010), Lunar dust particles blown by lander engine exhaust in rarefied and compressible flow, In: Proc. 12th ASCE Int. Conf. Engineering, Science, Construction and Operations in Challenging Environments “Earth and Space 2010”, 14-17 March 2010, Honolulu, Hawaii, USA, 134-142, DOI: 10.1061/41096(366)16.
10 Lane, J.E., T. Kasparis, P.T. Metzger, and W.L. Jones (2014b), In situ disdrometer calibration using multiple DSD moments, Acta Geophys. 62, 6, 1450-1477, DOI:10.2478/s11600-014-0237-2.
11 Metzger, P.T., J.E. Lane, and C.D. Immer (2008), Modification of Roberts’ theory for rocket exhaust plumes eroding lunar soil. In: Proc. 11th ASCE Int. Conf. Engineering, Science, Construction and Operations in Challenging Environments “Earth and Space 2008”, 3-5 March 2008, Long Beach, USA, 1-8, DOI: 10.1061/40988(323)4.
12 Metzger, P.T., J.E. Lane, C.D. Immer, J.N. Gamsky, W. Hauslein, X. Li, R.C. Latta III, and C.M. Donahue (2010), Scaling of erosion rate in subsonic jet experiments and Apollo lunar module landings. In: Proc. 12th ASCE Int. Conf. Engineering, Science, Construction and Operations in Challenging Environments “Earth and Space 2010”, 14-17 March 2010, Honolulu, Hawaii, USA, 191-207, DOI: 10.1061/41096(366)21.
13 Metzger, P.T., J. Smith, and J.E. Lane (2011), Phenomenology of soil erosion due to rocket exhaust on the Moon and the Mauna Kea lunar test site, J. Geophys. Res. 116, E6, E06005, DOI:10.1029/2010JE003745.
14 Morris, A.B., D.B. Goldstein, P.L. Varghese, and L.M. Trafton (2011), Plume impingement on a dusty lunar surface, AIP Conf. Proc. 1333, 1187-1192, DOI: 10.1063/1.3562805.
15 Roberts, L. (1963), The action of a hypersonic jet on a dust layer. In: 31st Ann. Meeting, Institute of Aerospace Sciences, New York, USA, IAS paper No. 63-50.
16 Rosenfeld, D., D.B. Wolff, and D. Atlas (1993), General probability-matched relations between radar reflectivity and rain rate, J. Appl. Meteorol. 32, 1, 50-72, DOI:10.1175/1520-0450(1993)032<0050:GPMRBR>2.0.CO;2.
17 Scott, R.F. (1975), Apollo program soil mechanics experiment, Final report, California Institute of Technology, Pasadena USA.
18 Shipley, S.T., E.W. Eloranta, and J.A. Weinman (1974), Measurement of rainfall rates by lidar, J. Appl. Meteorol. 13, 7, 800-807, DOI:10.1175/1520-0450(1974)013<0800:MORRBL>2.0.CO;2.
19 Smits, A.J., and J.P. Dussauge (2006), Turbulent Shear Layers in Supersonic Flow, 2nd ed., Springer Science+Business Media, New York, 424 pp.
20 van de Hulst, H.C. (1957), Light Scattering by Small Particles, John Wiley & Sons, New York.
21 Wexler, R., and D. Atlas (1963), Radar reflectivity and attenuation of rain, J. Appl. Meteor. 2, 2, 276-280, DOI: 10.1175/1520-0450(1963)002<0276:RRAAOR>2.0.CO;2.
DOI :
Cytuj : Namvaran, M. ,Negarestni, A. ,Grad, M. ,Polkowski, M. ,Wilde-Piórko, M. ,Suchcicki, J. ,Arant, T. ,Teisseyre, R. ,Moilanen, J. ,Pushkarev, P.Yu. ,Sas, W. ,Gabryś, K. ,Szymański, A. ,Oliviera, S. D. S. ,Figueredo, J. J. S. ,Li, Ch. ,Dai, Y. ,Zhao, J. ,Zhou, S. ,Yin, J. ,Xue, D. ,Wu, W. ,Niu, W. ,Tong, D. ,Luo, L. ,Zhang, R. ,Zhang, L. ,Kaczmarek, L. M. ,Sawczyński, Sz. ,Biegowski, J. ,Kozioł, A. ,Pierini, J. O. ,Restrepo, J. C. ,Lovallo, M. ,Telesca, L. ,Lewiński, S. ,Aleksandrowicz, S. ,Banaszkiewicz, M. ,Lane, J. E. ,Metzgert, P. T. , Estimation of Apollo Lunar Dust Transport using Optical Extinction Measurements. Acta Geophysica Vol. 63, no. 2/2015
facebook