Evaluation of the boundary layer morning transition using the CL-31 ceilometer signals

Czasopismo : Acta Geophysica
Tytuł artykułu : Evaluation of the boundary layer morning transition using the CL-31 ceilometer signals

Autorzy :
Belegante, L
National Institute of R&D for Optoelectronics, Magurele, Ilfov, Romania,
Nicola, D
National Institute of R&D for Optoelectronics, Magurele, Ilfov, Romania, nnicol@inoe.ro,
Nemuc, A
National Institute of R&D for Optoelectronics, Magurele, Ilfov, Romania,
Talianu, C
National Institute of R&D for Optoelectronics, Magurele, Ilfov, Romania,
Derognat, C
ARIA Technologies SA, Boulogne Billancourt, France,
Bloch, M.
Institute of Geophysics, Polish Academy of Sciences, Warszawa, Poland, mbloch@igf.edu.pl,
Karasiński, G.
Institute of Geophysics, Polish Academy of Sciences, Warszawa, Poland,
Holmen, S.E
The University Centre in Svalbard, Longyearbyen, Norway, siljeh@unis.no,
Dyrland, M.E
Birkeland Centre for Space Science, Bergen, Norway,
Sigernes, F.
University of Tromsø – The Arctic University of Norway, Tromsø Geophysical Observatory, Tromsø, Norway,
Karasiński, G
Institute of Geophysics, Polish Academy of Sciences, Warszawa, Poland, gkaras@igf.edu.pl,
Posyniak, M
Institute of Geophysics, Polish Academy of Sciences, Warszawa, Poland,
Bloch, M
Institute of Geophysics, Polish Academy of Sciences, Warszawa, Poland,
Sobolewski, P
Institute of Geophysics, Polish Academy of Sciences, Warszawa, Poland,
Małarzewski, Ł.
Institute of Geophysics, Polish Academy of Sciences, Warszawa, Poland,
Soroka, J
Institute of Geophysics, Polish Academy of Sciences, Warszawa, Poland,
Medvedeva, I.V
Institute of Solar-Terrestrial Physics (ISTP), Siberian Branch of the Russian Academy of Sciences, Irkutsk, Russia, ivmed@iszf.irk.ru,
Semenov, A.I.
Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences, Moscow, Russia,
Perminov, V.I.
Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences, Moscow, Russia,
Beletsky, A.B.
Institute of Solar-Terrestrial Physics (ISTP), Siberian Branch of the Russian Academy of Sciences, Irkutsk, Russia,
Tatarnikov, A.V.
Institute of Solar-Terrestrial Physics (ISTP), Siberian Branch of the Russian Academy of Sciences, Irkutsk, Russia,
Nemuc, A.
National Institute of R&D for Optoelectronics Romania,
Stachlewska, I.S.
Institute of Geophysics, Faculty of Physics, University of Warsaw (IGFUW), Warsaw, Poland, iwonas@igf.fuw.edu.pl,
Vasilescu, J.
National Institute of R&D for Optoelectronics Romania,
Górska, A
Institute of Geophysics, Faculty of Physics, University of Warsaw (IGFUW), Warsaw, Poland,
Nicolae, D
National Institute of R&D for Optoelectronics Romania,
Talianu, C
National Institute of R&D for Optoelectronics Romania, camelia@inoe.ro,
Sokół, P
Institute of Geophysics, Faculty of Physics, University of Warsaw, Warsaw, Poland,
Stachlewska, I.S
Institute of Geophysics, Faculty of Physics, University of Warsaw, Warsaw, Poland, iwona.stachlewska@igf.fuw.edu.pl,
Ungureanu, I.
University of Bucharest, Faculty of Physics, Bucharest, Romania,
Stefan, S.
University of Bucharest, Faculty of Physics, Bucharest, Romania,
Abstrakty : The morning transition of the atmospheric boundary layer from nighttime to daytime conditions was investigated using the Vaisala’s CL-31 ceilometer, located at Magurele, Romania (44.35°N, 26.03°E). Based on the 5-days backward trajectories, we rejected those measurements which were related to the intrusions of long-range transported particles. In the several discussed cases, which are representative for the morning transition in spring and summer seasons over Magurele, the increasing depth of the boundary layer related to the local aerosol load was well discernible. The dynamic change of its depth was estimated with errors using a simple method based on finding the minimum of the first derivative of the ceilometer signal. In the summer, the increase of the boundary layer depth due to the morning transition from the nighttime to daytime conditions starts on average of about 80 min earlier and the growth rate of this depth is 143 ± 6 m/h and about 37% slower than in the spring case.

Słowa kluczowe : granica, grubość warstwy, ceilometr, boundary, layer depth, ceilometer, morning transition,
Wydawnictwo : Instytut Geofizyki PAN
Rocznik : 2014
Numer : Vol. 62, no. 2
Strony : 367 – 380
Bibliografia : Angevine, W.M., H.K. Baltink, and F.C. Bosveld (2001), Observations of the morning transition of the convective boundary layer, Bound.-Lay. Meteorol. 101, 2, 209-227, DOI: 10.1023/A:1019264716195.
Belegante, L., D. Nicolae, A. Nemuc, C. Talianu, and C. Derognat (2014), Retrieval of the boundary layer height from active and passive remote sensors. Comparison with a NWP model, Acta Geophys. 62, 2, 276-289, DOI: 10.2478/s11600-013-0167-4 (this issue).
Boers, R., and E.W. Eloranta (1986), Lidar measurements of the atmospheric entrainment zone and the potential temperature jump across the top of the mixed layer, Bound.-Lay. Meteorol. 34, 4, 357-375, DOI: 10.1007/BF00120988.
Cohn, S.A., and W.M. Angevine (2000), Boundary layer height and entrainment zone thickness measured by Lidars and wind-profiling radars, J. Appl. Meteor. 39, 8, 1233-1247, DOI: 10.1175/1520-0450(2000)039<1233:BLHAEZ>2.0.CO;2.
Draxler, R.R., and G.D. Rolph (2012), HYSPLIT (HYbrid Single-Particle Lagrangian Integrated Trajectory), NOAA Air Resources Laboratory, Silver Spring, USA, http://ready.arl.noaa.gov/HYSPLIT.php.
Heese, B., H. Flentje, D. Althausen, A. Ansmann, and S. Frey (2010), Ceilometer lidar comparison: backscatter coefficient retrieval and signal-to-noise ratio determination, Atmos. Meas. Tech. 3, 6, 1763-1770, DOI: 10.5194/amt-3-1763-2010.
Martucci, G., C. Milroy, and C.D. O’Dowd (2010), Detection of cloud-base height using Jenoptik CHM15K and Vaisala CL31 ceilometers, J. Atmos. Oceanic Technol. 27, 2, 305-318, DOI: 10.1175/2009JTECHA1326.1.
Morille, Y., M. Haeffelin, P. Drobinski, and J. Pelon (2007), STRAT: An automated algorithm to retrieve the vertical structure of the atmosphere from singlechannel lidar data, J. Atmos. Oceanic Technol. 24, 5, 761-775, DOI: 10.1175/JTECH2008.1.
Münkel, C., and R. Roininen (2008), Mixing layer height assessment with a compact lidar ceilometer. In: The 88th Annual Meeting Symposium on Recent Developments in Atmospheric Applications of Radar and Lidar, 20-24 January 2008, New Orleans, USA, Poster session P2.2.
Münkel, C., N. Eresmaa, J. Räsänen, and A. Karppinen (2007), Retrieval of mixing height and dust concentration with lidar ceilometer, Bound.-Lay. Meteorol. 124, 1, 117-128, DOI: 10.1007/s10546-006-9103-3.
Nemuc, A., I.S. Stachlewska, J. Vasilescu, A. Gorska, D. Nicolae, and C. Talianu (2014), Optical properties of long-range transported volcanic ash over Romania and Poland during Eyjafjallajökull eruption in 2010, Acta Geophys. 62, 2, 350-366, DOI: 10.2478/s11600-013-0180-7 (this issue).
Ritter, C., and R. Neuber (2012), Private communication 20-24.08.2012.
Seidel, D.J., C.O. Ao, and K. Li (2010), Estimating climatological planetary boundary layer heights from radiosonde observations: Comparison of methods and uncertainty analysis, J. Geophys. Res. 115, D16113, DOI: 10.1029/2009JD013680.
Sicard, M., C. Pérez, F. Rocadenbosch, J.M. Baldasano, and D. Garcia-Vizcaino (2006), Mixed-layer depth determination in the Barcelona coastal area from regular lidar measurements: methods, results and limitations, Bound.-Lay. Meteorol. 119, 1, 135-157, DOI: 10.1007/s10546-005-9005-9.
Stachlewska, I.S., M. Piądłowski, S. Migacz, A. Szkop, A.J. Zielińska, and P.L. Swaczyna (2012), Ceilometer observations of the boundary layer over Warsaw, Poland, Acta Geophys. 60, 5, 1386-1412, DOI: 10.2478/s11600-012-0054-4.
Steyn, D.G., M. Baldi, and R.M. Hoff (1999), The detection of mixed layer depth and entrainment zone thickness from lidar backscatter profiles, J. Atmos. Oceanic Technol. 16, 7, 953-959, DOI: 10.1175/1520-0426(1999)016<0953:TDOMLD>2.0.CO;2.
Tsaknakis, G., A. Papayannis, P. Kokkalis, V. Amiridis, H.D. Kambezidis, R.E. Mamouri, G. Georgoussis, and G. Avdikos (2011), Inter-comparison of lidar and ceilometer retrievals for aerosol and Planetary Boundary Layer profiling over Athens, Greece, Atmos. Meas. Tech. 4, 6, 1261-1273, DOI: 10.5194/amt-4-1261-2011.
Ungureanu, I., S. Stefan, and D. Nicolae (2010), Investigation of the cloud cover and Planetary Boundary Layer (PBL) characteristics using ceilometer CL-31, Rom. Rep. Phys. 62, 2, 396-404.
Vaisala User’s Guide (2009), Vaisala – services, manuals, http://www.vaisala.com.
Wallace, J.M., and P.V. Hobbs (2006), Atmospheric Science: An introductory Survey, 2nd ed., Elsevier Academic Press, Amsterdam.
Wiegner, M., and A. Geiβ (2012), Aerosol profiling with the JenOptik ceilometer CHM15kx, Atmos. Meas. Tech. 5, 1953-1964, DOI: 10.5194/amt-5-1953-2012.
Wiegner, M., S. Emeis, V. Freudenthaler, B. Heese, W. Junkermann, C. Münkel, K. Schäfer, M. Seefeldner, and S. Vogt (2006), Mixing layer height over Munich, Germany: Variability and comparisons of different methodologies, J. Geophys. Res. 111, D13201, DOI: 10.1029/2005JD006593.
DOI :
Cytuj : Belegante, L ,Nicola, D ,Nemuc, A ,Talianu, C ,Derognat, C ,Bloch, M. ,Karasiński, G. ,Holmen, S.E ,Dyrland, M.E ,Sigernes, F. ,Karasiński, G ,Posyniak, M ,Bloch, M ,Sobolewski, P ,Małarzewski, Ł. ,Soroka, J ,Medvedeva, I.V ,Semenov, A.I. ,Perminov, V.I. ,Beletsky, A.B. ,Tatarnikov, A.V. ,Nemuc, A. ,Stachlewska, I.S. ,Vasilescu, J. ,Górska, A ,Nicolae, D ,Talianu, C ,Sokół, P ,Stachlewska, I.S ,Ungureanu, I. ,Stefan, S. , Evaluation of the boundary layer morning transition using the CL-31 ceilometer signals. Acta Geophysica Vol. 62, no. 2/2014
facebook