Experimental evidence of the double-porosity effects in geomaterials

Czasopismo : Acta Geophysica
Tytuł artykułu : Experimental evidence of the double-porosity effects in geomaterials

Autorzy :
Shiuly, A
Department of Earthquake Engineering, Indian Institute of Technology Roorkee, Roorkee, India,
Kumar, V
Department of Earthquake Engineering, Indian Institute of Technology Roorkee, Roorkee, India,
Narayan, J.P.
Department of Earthquake Engineering, Indian Institute of Technology Roorkee, Roorkee, India, jaypnfeq@iitr.ernet.in,
Mousavian, R.
Department of Geodesy and Geomatics Engineering, K.N. Toosi University of Technology, Tehran, Iran, R_mousavian@yahoo.com,
Hossainali, M.M.
Department of Geodesy and Geomatics Engineering, K.N. Toosi University of Technology, Tehran, Iran, Hossainali@kntu.ac.ir,
Wiszniowski, J.
Institute of Geophysics, Polish Academy of Sciences, Warszawa, Poland, jwisz@igf.edu.pl,
Plesiewicz, B.M.
Institute of Geophysics, Polish Academy of Sciences, Warszawa, Poland,
Trojanowski, J.
Institute of Geophysics, Polish Academy of Sciences, Warszawa, Poland,
Agh-Atabai, M.
Department of Geology, Faculty of Sciences, Golestan University, Gorgan, Iran, maryamataby@yahoo.com,
Mirabedini, M.S.
Department of Geology, Faculty of Sciences, Golestan University, Gorgan, Iran, m_mirabedini89@yahoo.com,
Rashed, M.
Department of Geophysics, Faculty of Earth Sciences, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia; Geology Department, Faculty of Science, Suez Canal University, Ismailia, Egypt, rashedmohamed@gmail.com,
Muduli, P.K
Department of Civil Engineering, National Institute of Technology, Rourkela, India, pradyut.muduli@gmail.com,
Das, S.K.
Department of Civil Engineering, National Institute of Technology, Rourkela, India, saratdas@rediffmail.com,
Liu, H.
School of Information Engineering, China University of Geosciences, Beijing, China, Jerryliu1103@gmail.com,
Lei, X
School of Information Engineering, China University of Geosciences, Beijing, China,
Mao, C
Research Institute of Exploration and Development, DianQianGui Oil Company, Sinopec Group, Kunming, Yunnan, China,
Li, S.
Research Institute of Exploration and Development, QingHai Oil Company, CNPC, Dunhuang, Gansu, China,
Chou, P.-Y
Geotechnical Engineering Research Center, Sinotech Engineering Consultants, Inc., Taipei, Taiwan, poyi.chou@sinotech.org.tw,
Hsu, S.-M
Geotechnical Engineering Research Center, Sinotech Engineering Consultants, Inc., Taipei, Taiwan, shihmeng@sinotech.org.tw,
Chen, P.-J
Geotechnical Engineering Research Center, Sinotech Engineering Consultants, Inc., Taipei, Taiwan, ray@sinotech.org.tw,
Lin, J.-J.
Geotechnical Engineering Research Center, Sinotech Engineering Consultants, Inc., Taipei, Taiwan, jjlin@sinotech.org.tw,
Lo, H.-C
Geotechnical Engineering Research Center, Sinotech Engineering Consultants, Inc., Taipei, Taiwan, jaylo@sinotech.org.tw,
Zamani, A
Department of Earth Sciences, College of Sciences, Shiraz University, Shiraz, Iran, zamani_a_geol@yahoo.com,
Azar, A.P
Department of Earth Sciences, College of Sciences, Shiraz University, Shiraz, Iran, kolahiazar@gmail.com,
Safavi, A.A.
School of Electrical and Computer Engineering, Shiraz University, Shiraz, Iran, safavi@shirazu.ac.ir,
Samui, P.
Centre for Disaster Mitigation and Management, VIT University, Vellore, India, pijush.phd@gmail.com,
Kim, D.
Department of Civil Engineering, Kunsan National University, Kunsan, Jeonbuk, South Korea, kim2kie@chol.com,
Kundzewicz, Z.W
Institute for Agricultural and Forest Environment, Polish Academy of Sciences, Poznań, Poland, kundzewicz@yahoo.com,
Pińskwar, I.
Institute for Agricultural and Forest Environment, Polish Academy of Sciences, Poznań, Poland,
Choryński, A.
Institute for Agricultural and Forest Environment, Polish Academy of Sciences, Poznań, Poland,
Stoffel, M
Institute of Geological Sciences, University of Berne, Berne, Switzerland,
Ruiz-Villanueva, V
Institute of Geological Sciences, University of Berne, Berne, Switzerland,
Ballesteros-Canovas, J.A
Institute of Geological Sciences, University of Berne, Berne, Switzerland,
Kaczka, R.J
University of Silesia, Faculty of Earth Sciences, Sosnowiec, Poland,
Niedźwiedź, T
University of Silesia, Faculty of Earth Sciences, Sosnowiec, Poland,
Łupikasza, E
University of Silesia, Faculty of Earth Sciences, Sosnowiec, Poland,
Czajka, B.
University of Silesia, Faculty of Earth Sciences, Sosnowiec, Poland,
Małarzewski, Ł.
University of Silesia, Faculty of Earth Sciences, Sosnowiec, Poland,
Janecka, K
University of Silesia, Faculty of Earth Sciences, Sosnowiec, Poland,
Wyżga, B
University of Silesia, Faculty of Earth Sciences, Sosnowiec, Poland,
Mikuś, P.
University of Silesia, Faculty of Earth Sciences, Sosnowiec, Poland,
Ngoc, T.D
Institut National de la Recherche Scientifique, Centre Eau Terre Environnement (INRS-ETE), Québec, Canada, tien_dung.tran_ngoc@ete.inrs.ca,
Lewandowska, J.
Laboratoire de Mécanique et Génie Civil (LMGC), Montpellier, France, jolanta.lewandowska@univ-montp2.fr,
Bertin, H.
Laboratoire I2M-TREFLE Université de Bordeaux, Bordeaux, France, h.bertin@i2m.u-bordeaux1.fr,
Abstrakty : Double-porosity is an important characteristic of microstructure in a large range of geomaterials. It designs porous media with connected fissures/fractures or aggregated soils. The origin of double-porosity can be natural or/and it can result from mechanical, chemical or biological damage. The presence of double-porosity can significantly affect the behaviour of geomaterials. In this paper we provide an experimental evidence of the double-porosity effects by performing laboratory experiments. Series of tracer dispersion experiments (in saturated and unsaturated steady-state water flow conditions) in a physical model of double-porosity geomaterial were carried out. For the comparative purposes, experiments of the same type were also performed in a singleporosity model medium. The results clearly showed that the doubleporosity microstructure leads to the non-Fickian behaviour of the tracer (early breakthrough and long tail) in both saturated and unsaturated cases.

Słowa kluczowe : podwójna porowatość, model fizyczny, nienasycone warunki, nasycone warunki, double porosity, physical model, unsaturated conditions, saturated conditions, tracer dispersion, non-Fickian behaviour,
Wydawnictwo : Instytut Geofizyki PAN
Rocznik : 2014
Numer : Vol. 62, no. 3
Strony : 642 – 655
Bibliografia : Barenblatt, G., I. Zheltov, and I. Kochina (1960), Basic concepts in the theory of seepage of homogeneous liquids in the fissured rocks, J. Appl. Math. Mech. 24, 5, 1286-1303, DOI: 10.1016/0021-8928(60)90107-6.
Berkowitz, B., H. Scher, and S.E. Silliman (2000), Anomalous transport in laboratory-scale, heterogeneous porous media, Water Resour. Res. 36, 1, 149-158, DOI: 10.1029/1999WR900295.
Bijeljic, B., P. Mostaghimi, and M.J. Blunt (2013), Insights into non-Fickian solute transport in carbonates, Water Resour. Res. 49, 5, 2714-2728, DOI: 10.1002/wrcr.20238.
Carminati, A., A. Kaestner, P. Lehmann, and H. Flühler (2008), Unsaturated water flow across soil aggregate contacts, Adv. Water Resour. 31, 9, 1221-1232, DOI: 10.1016/j.advwatres.2008.01.008.
Carrera, J., X. Sánchez-Vila, I. Benet, A. Medina, G. Galarza, and J. Guimerà (1998), On matrix diffusion: formulations, solution methods and qualitative effects, Hydrogeol. J. 6, 1, 178-190, DOI: 10.1007/s100400050143.
Cassel, D.K., M.T. van Genuchten, and P.J. Wierenga (1975), Predicting anion movement in disturbed and undisturbed soils, Soil Sci. Soc. Am. J. 39, 6, 1015-1019, DOI: 10.2136/sssaj1975.03615995003900060008x.
Daïan, J.-F. (2007), Mercury porometry – XDQ model, Université Joseph Fourier, Grenoble, 97 pp., http://www.lthe.fr/LTHE3/IMG/pdf/Le-Modele-XDQ.pdf (in French).
Delay, F., G. Porel, and G. de Marsily (1997), Predicting solute transport in heterogeneous media from results obtained in homogeneous ones: An experimental approach, J. Contam. Hydrol. 25, 1-2, 63-84, DOI: 10.1016/S0169-7722(96)00020-4.
Dentz, M., T. Le Borgne, A. Englert, and B. Bijeljic (2011), Mixing, spreading and reaction in heterogeneous media: A brief review, J. Contam. Hydrol. 120-121, 1-17, DOI: 10.1016/j.jconhyd.2010.05.002.
Elrick, D.E., and L.K. French (1966), Miscible displacement patterns on disturbed and undisturbed soil cores, Soil Sci. Soc. Am. J. 30, 2, 153-156, DOI: 10.2136/sssaj1966.03615995003000020007x.
Flavigny, E., J. Desrues, and B. Palayer (1990), Note technique – Le sable d’Hostun ‘‘RF’’, Rev. Fr. Geotech. 53, 67-70 (in French).
Fourar, M., and G. Radilla (2009), Non-Fickian description of tracer transport through heterogeneous porous media, Transp. Porous Med. 80, 3, 561-579, DOI: 10.1007/s11242-009-9380-7.
Gaber, H.M., W.P. Inskeep, J.M. Wraith, and S.D. Comfort (1995), Nonequilibrium transport of atrazine through large intact soil cores, Soil Sci. Soc. Am. J. 59, 1, 60-67, DOI: 10.2136/sssaj1995.03615995005900010009x.
Gouze, P., T. Le Borgne, R. Leprovost, G. Lods, T. Poidras, and P. Pezard (2008), Non-Fickian dispersion in porous media: 1. Multiscale measurements using single-well injection withdrawal tracer tests, Water Resour. Res. 44, 6, W06426, DOI: 10.1029/2007wr006278.
Haws, N.W., B.S. Das, and P.S.C. Rao (2004), Dual-domain solute transfer and transport processes: evaluation in batch and transport experiments, J. Contam. Hydrol. 75, 3-4, 257-280, DOI: 10.1016/j.jconhyd.2004.07.001.
Kätterer, T., B. Schmied, K.C. Abbaspour, and R. Schulin (2001), Single- and dualporosity modelling of multiple tracer transport through soil columns: effects of initial moisture and mode of application, Eur. J. Soil Sci. 52 ,1, 25-36, DOI: 10.1046/j.1365-2389.2001.00355.x.
Knudby, C., and J. Carrera (2005), On the relationship between indicators of geostatistical, flow and transport connectivity, Adv. Water Resour. 28, 4, 405-421, DOI: 10.1016/j.advwatres.2004.09.001.
Koch, S., and H. Flühler (1993), Solute transport in aggregated porous media: Comparing model independent and dependent parameter estimation, Water Air Soil Poll. 68, 1-2, 275-289, DOI: 10.1007/Bf00479408.
Koestel, J.K., J. Moeys, and N.J. Jarvis (2012), Meta-analysis of the effects of soil properties, site factors and experimental conditions on solute transport, Hydrol Earth Syst. Sc. 16, 6, 1647-1665, DOI: 10.5194/hess-16-1647-2012.
Köhne, J.M., S. Köhne, and J. Šimůnek (2009), A review of model applications for structured soils: a) Water flow and tracer transport, J. Contam. Hydrol. 104, 1-4, 4-35, DOI: 10.1016/j.jconhyd.2008.10.002.
Köhne, S., B. Lennartz, J.M. Köhne, and J. Šimůnek (2006), Bromide transport at a tile-drained field site: experiment, and one- and two-dimensional equilibrium and non-equilibrium numerical modeling, J. Hydrol. 321, 1-4, 390-408, DOI: 10.1016/j.jhydrol.2005.08.010.
Le Goc, R., J.-R. de Dreuzy, and P. Davy (2010), Statistical characteristics of flow as indicators of channeling in heterogeneous porous and fractured media, Adv. Water Resour. 33, 3, 257-269, DOI: 10.1016/j.advwatres.2009.12.002.
Levy, M., and B. Berkowitz (2003), Measurement and analysis of non-Fickian dispersion in heterogeneous porous media, J. Contam. Hydrol. 64, 3-4, 203-226, DOI: 10.1016/S0169-7722(02)00204-8.
Lewandowska, J., A. Szymkiewicz, W. Gorczewska, and M. Vauclin (2005), Infiltration in a double-porosity medium: Experiments and comparison with a theoretical model, Water Resour. Res. 41, 2, W02022, DOI: 10.1029/2004wr003504.
Lewandowska, J., T.D. Tran Ngoc, M. Vauclin, and H. Bertin (2008), Water drainage in double-porosity soils: Experiments and micro-macro modeling, J. Geotech. Geoenviron. Eng. 134, 2, 231-243, DOI: 10.1061/(ASCE)1090-0241(2008)134:2(231).
Matheron, G., and G. de Marsily (1980), Is transport in porous media always diffusive? A counterexample, Water Resour. Res. 16, 5, 901-917, DOI: 10.1029/Wr016i005p00901.
Nkedi-Kizza, P., J.W. Biggar, M.T. van Genuchten, P.J. Wierenga, H.M. Selim, J.M. Davidson, and D.R. Nielsen (1983), Modeling tritium and chloride 36 transport through an aggregated oxisol, Water Resour. Res. 19, 3, 691-700, DOI: 10.1029/WR019i003p00691.
Pot, V., J. Šimůnek, P. Benoit, Y. Coquet, A. Yra, and M.-J. Martínez-Cordón (2005), Impact of rainfall intensity on the transport of two herbicides in undisturbed grassed filter strip soil cores, J. Contam. Hydrol. 81, 1-4, 63-88. DOI: 10.1016/j.jconhyd.2005.06.013.
Rao, P.S.C., D.E. Rolston, R.E. Jessup, and J.M. Davidson (1980), Solute transport in aggregated porous media : Theoretical and experimental evaluation, Soil Sci. Soc. Am. J. 44, 6, 1139-1146, DOI: 10.2136/sssaj1980.03615995004400060003x.
Scheidegger, A.E. (1958), The random-walk model with autocorrelation of flow through porous media, Can. J. Phys. 36, 6, 649-658, DOI: 10.1139/p58-070.
Seyfried, M.S., and P.S.C. Rao (1987), Solute transport in undisturbed columns of an aggregated tropical soil: Preferential flow effects, Soil Sci. Soc. Am. J. 51, 6, 1434-1444, DOI: 10.2136/sssaj1987.03615995005100060008x.
Silliman, S.E., and E.S. Simpson (1987), Laboratory evidence of the scale effect in dispersion of solutes in porous media, Water Resour. Res. 23, 8, 1667-1673, DOI: 10.1029/WR023i008p01667.
Sternberg, S.P.K., J.H. Cushman, and R.A. Greenkorn (1996), Laboratory observation of nonlocal dispersion, Transp. Porous Media 23, 2, 135-151, DOI:10.1007/BF00178123.
Szymkiewicz, A., J. Lewandowska, R. Angulo-Jaramillo, and J. Butlańska (2008), Two-scale modeling of unsaturated water flow in a double-porosity medium under axisymmetric conditions, Can. Geotech. J. 45, 2, 238-251, DOI: 10.1139/T07-096.
Tran Ngoc, T.D. (2008), Transport de solutés dans un milieu à double-porosité non saturé. Modélisation par homogénéisation et application, Université Joseph Fourier – Grenoble, Ph.D. Thesis, 185 pp. (in French).
Tran Ngoc, T.D., J. Lewandowska, and H. Bertin (2007) Etude expérimentale de la dispersion dans un milieu à double porosité. In: 18éme Congrès Français de Mécanique, 27-31.08.2007, Grenoble, France, 6 pp. (CD-rom).
Tran Ngoc, T.D., J. Lewandowska, M. Vauclin, and H. Bertin (2011), Two-scale modeling of solute dispersion in unsaturated double-porosity media: Homogenization and experimental validation, Int. J. Numer. Anal. Meth. Geomech. 35, 14, 1536-1559, DOI: 10.1002/Nag.967.
van Genuchten, M.T., and P.J. Wierenga (1977), Mass transfer studies in sorbing porous media: II. Experimental evaluation with tritium (3 H2O), Soil Sci. Soc. Am. J. 41, 2, 272-278, DOI: 10.2136/sssaj1977.03615995004100020022x.
Warren, J.E., and P.J. Root (1963), The behavior of naturally fractured reservoirs, Soc. Pet. Eng. J. 3, 3, 245-255, DOI: 10.2118/426-PA.
Willmann, M., J. Carrera, and X. Sánchez-Vila (2008), Transport upscaling in heterogeneous aquifers: What physical parameters control memory functions? Water Resour. Res. 44, 12, W12437, DOI: 10.1029/2007wr006531.
Zinn, B., L.C. Meigs, C.F. Harvey, R. Haggerty, W.J. Peplinski, and C.F. von Schwerin (2004), Experimental visualization of solute transport and mass transfer processes in two-dimensional conductivity fields with connected regions of high conductivity, Environ. Sci. Technol. 38, 14, 3916-3926, DOI: 10.1021/Es034958g.
DOI :
Cytuj : Shiuly, A ,Kumar, V ,Narayan, J.P. ,Mousavian, R. ,Hossainali, M.M. ,Wiszniowski, J. ,Plesiewicz, B.M. ,Trojanowski, J. ,Agh-Atabai, M. ,Mirabedini, M.S. ,Rashed, M. ,Muduli, P.K ,Das, S.K. ,Liu, H. ,Lei, X ,Mao, C ,Li, S. ,Chou, P.-Y ,Hsu, S.-M ,Chen, P.-J ,Lin, J.-J. ,Lo, H.-C ,Zamani, A ,Azar, A.P ,Safavi, A.A. ,Samui, P. ,Kim, D. ,Kundzewicz, Z.W ,Pińskwar, I. ,Choryński, A. ,Stoffel, M ,Ruiz-Villanueva, V ,Ballesteros-Canovas, J.A ,Kaczka, R.J ,Niedźwiedź, T ,Łupikasza, E ,Czajka, B. ,Małarzewski, Ł. ,Janecka, K ,Wyżga, B ,Mikuś, P. ,Ngoc, T.D ,Lewandowska, J. ,Bertin, H. , Experimental evidence of the double-porosity effects in geomaterials. Acta Geophysica Vol. 62, no. 3/2014
facebook