Experimental method for estimation of compaction in the Oxfordian bedded limestones of the southern Kraków-Częstochowa Upland, Southern Poland

Czasopismo : Acta Geologica Polonica
Tytuł artykułu : Experimental method for estimation of compaction in the Oxfordian bedded limestones of the southern Kraków-Częstochowa Upland, Southern Poland

Autorzy :
Kennedy, W. J.
Oxford University Museum of Natural History, Parks Road, Oxford OX1 3PW and Department of Earth Sciences, Parks Road, Oxford OX1 3AN, United Kingdom, jim.kennedy@oum.ox.ac.uk,
Walaszczyk, I.
Faculty of Geology, University of Warsaw, Al. Żwirki i Wigury 93, PL-02-089 Warszawa, Poland, i.walaszczyk@uw.edu.pl,
Kopaevich, L.
Geological Faculty, Lomonosov Moscow State University, Leninskie gory, Moscow, 119991 Russia,
Beniamovski, V. N.
Geological Institute, Russian Academy of Sciences, Pyzhevski 7, Moscow, 119017, Russia,
Wilmsen, M.
Senckenberg Naturhistorische Sammlungen Dresden, Museum für Mineralogie und Geologie, Sektion Paläozoologie, Königsbrücker Landstr. 159, D-01109 Dresden, Germany, markus.wilmsen@senckenberg.de,
Storm, M.
Department of Earth Sciences, University of Oxford, South Parks Road, Oxford OX1 3AN, United Kingdom,
Fürsich, F.
GeoZentrum Nordbayern, Fachgruppe PaläoUmwelt, Friedrich-Alexander-Universität Erlangen-Nürnberg, Loewenichstr. 28, D-91054 Erlangen, Germany,
Majidifard, M.
Geological Survey of Iran, Box 131851-1494, Tehran, Iran,
Gasiński, M. A.
Institute of Geological Sciences, Jagiellonian University, Oleandry 2a, PL-30-063 Kraków, Poland, adam.gasinski@uj.edu.pl,
Olshtynska, A.
Institute of Geological Sciences, National Academy of Sciences of Ukraine, O. Gonchara str. 55-b, 01601 Kiev, Ukraine, ol-lesia@mail.ru,
Uchman, A.
Institute of Geological Sciences, Jagiellonian University, Oleandry 2a, PL-30-063 Kraków, Poland, alfred.uchman@uj.edu.pl,
Kennedy, W. J.
Oxford University Museum of Natural History, Parks Road, Oxford OX1 3W and Department of Earth Sciences, Parks Road, Oxford OX1 3AN, United Kingdom, jim.kennedy@oum.ox.ac.uk,
Klinger, H.
Natural History Collections Department, Iziko South African Museum, P. O. Box 61, Cape Town, 8000, Republic of South Africa, hkling@telekomsa.net,
Machalski, M.
Institute of Paleobiology, Polish Academy of Sciences, ul. Twarda 51/55, PL-00-818 Warszawa, Poland, mach@twarda.pan.pl,
Kennedy, W. J.
Oxford University Museum of Natural History, Parks Road, Oxford, OX1 3PW, United Kingdom, jim.kennedy@oum.ox.ac.uk,
Schneider, S.
CASP, University of Cambridge, West Building, 181A Huntingdon Road, Cambridge, CB3 0DH, UK and GeoZentrum Nordbayern, Paleobiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Loewenichstr. 28, 91054 Erlangen, Germany, simon.schneider@casp.cam.ac.uk,
Jäger, M.
Lindenstr. 53, 72348 Rosenfeld, Germany, langstein.jaeger@web.de,
Kroh, A.
Natural History Museum Vienna, Geology-Palaeontology, Burgring 7, 1010 Wien, Austria, andreas.kroh@nhm-wien.ac.at,
Mitterer, A.
Hoffmann Mineral GmbH, Münchener Str. 75, 86633 Neuburg an der Donau, Germany, agnes.mitterer@sonax.de,
Niebuhr, B.
Senckenberg Naturhistorische Sammlungen Dresden, Museum für Mineralogie und Geologie, Paläozoologie, Königsbrücker Landstr. 159, 01109 Dresden, Germany, niebuhr.birgit@googlemail.com,
Vodrážka, R.
Academy of Sciences of the Czech Republic, Institute of Geology, Rozvojová 269, 16502 Praha 6, Czech Republic, radek.vodrazka@seznam.cz,
Wilmsen, M.
Senckenberg Naturhistorische Sammlungen Dresden, Museum für Mineralogie und Geologie, Paläozoologie, Königsbrücker Landstr. 159, 01109 Dresden, Germany, markus.wilmsen@senckenberg.de,
Wood, C. J.
Scops Geological Services Ltd., 31 Periton Lane, Minehead, Somerset TA24 8AQ, UK, chrisjwood@btinternet.com,
Zágoršek, K.
Department of Paleontology, National Museum, Vaclavske nam. 68, 11579 Praha 1, Czech Republic, kamil_zagorsek@nm.cz,
Jurkowska, A.
Institute of Geological Sciences, Jagiellonian University, Oleandry 2a; 30-063 Kraków, Poland, jurkowska.a@gmail.com,
Uchman, A.
Institute of Geological Sciences, Jagiellonian University, Oleandry 2a; 30-063 Kraków, Poland, alfred.uchman@uj.edu.pl,
Kennedy, W. J.
Oxford University Museum of Natural History, Parks Road, Oxford OX1 3W and Department of Earth Sciences, Parks Road, Oxford OX1 3AN, United Kingdom, jim.kennedy@oum.ox.ac.uk,
Walaszczyk, I.
Faculty of Geology, University of Warsaw, Al. Żwirki i Wigury 93, PL-02-089 Warszawa, Poland,
Gale, A.
Department of Earth and Environmental Sciences, University of Portsmouth, Portsmouth PO1 3QL. United Kingdom,
Dembicz, K.
Spirifer Geological Society, Warszawa, Poland,
Praszkier, T.
Spirifer Geological Society, Warszawa, Poland,
Fedorowski, J.
Institute of Geology, Adam Mickiewicz University, Maków Polnych 16, Pl-61-606 Poznań, Poland, jerzy@amu.edu.pl,
Kullmann, J.
Mathematisch-Naturwissenschaften Faculty, Geowissenschaften University, Tübingen, Hölderlinstrasse 12, Germany, juergen.kullmann@uni-tuebingen.de,
Kochman, A.
AGH University of Science and Technology, Faculty of Geology, Geophysics and Environment Protection, Al. A. Mickiewicza 30; 30-059 Kraków, Poland, kochman@geol.agh.edu.pl,
Matyszkiewicz, J.
AGH University of Science and Technology, Faculty of Geology, Geophysics and Environment Protection, Al. A. Mickiewicza 30; 30-059 Kraków, Poland, jamat@geol.agh.edu.pl,
Abstrakty : The Upper Jurassic carbonates exposed in the southern part of the Kraków-Częstochowa Upland are well known for their significant facies diversity related to the presence of microbial and microbial-sponge carbonate buildups and bedded detrital limestone in between. Both the buildups and detrital limestones revealed differential susceptibility to compaction which, apart from differential subsidence of the Palaeozoic basement and synsedimentary faulting, was one of the factors controlling seafloor palaeorelief in the Late Jurassic sedimentary basin. The compaction of the detrital limestones has been estimated with an experimental oedometric method in which specially prepared mixtures made of ground limestones from a quarry in the village of Żary were subjected to oedometer tests. The diameters of the detrital grains and their percentages in the limestones were determined by microscopic examinations of thin sections. The diameters were assigned to predetermined classes corresponding to the Udden-Wentworth scale. The rock samples were then ground down to the grain sizes observed in thin sections. From such materials, mixtures were prepared of grain size distributions corresponding to those observed in thin sections. After adding water the mixtures were subjected to oedometer tests. Analysis of the compression of such mixtures under specific loads enabled preparation of a mathematical formula suitable for the estimation of mechanical compaction of the limestone. The obtained values varied from 27.52 to 55.53% for a load corresponding to 300 metres burial depth. The most significant effect of mechanical compaction was observed for loads representing only 2 metres burial depth. Further loading resulted in a much smaller reduction in sample height. The results of the oedometer tests cannot be used directly to determine compaction of the detrital limestones. Mainly because microscopic observations of thin sections of the experimental material show that chemical compaction was also an important factor influencing thickness reduction of the limestones.

Słowa kluczowe : kompakcja, badania edometryczne, analiza, dorzecze, mikrofacje, jura późna, Wyżyna Krakowsko-Częstochowska, differential compaction, oedometer test, basin analysis, microfacies, Upper Jurassic, Kraków-Częstochowa Upland,
Wydawnictwo : Faculty of Geology of the University of Warsaw
Rocznik : 2013
Numer : Vol. 63, no. 4
Strony : 681 – 696
Bibliografia : 1. Aagaard, P. and Jahren, J. 2010. Special issue introduction: Compaction processes – Porosity, permeability and rock properties evolution in sedimentary basins. Marine and Petroleum Geology, 27, 1681–1683.
2. Aplin, A.C., Yang, Y. and Hansen, S. 1995. Assessment of β, the compression coefficient of mudstones and its relationship with detailed lithology. Marine and Petroleum Geology, 12, 995–963.
3. Audet, D.M. 1995. Modelling of porosity evolution and mechanical compaction of calcareous sediments. Sedimentology, 42, 355–373.
4. Bathurst, R.G.C. 1975. Carbonate Sediments and their Diagenesis, 658 pp. Elsevier; Amsterdam.
5. Bathurst, R.G.C. 1987. Diagenetically enhanced bedding in argillaceous platform limestone: stratified cementation and selective compaction, Sedimentology, 34, 749–779.
6. Bathurst, R.G.C. 1991. Pressure-dissolution and limestone bedding: the influence of stratified cementation. In: G. Einsele, W. Ricken and A. Seilacher (Eds), Cycles and Events in Stratigraphy, pp. 450–463. Berlin.
7. Bausch, W.M. 1996. Noncarbonates as controlling factor in reef growth and as a tool in reef stratigraphy (examples from the Upper Jurassic of Southern Germany). In: J. Reitner, F. Neuweiler and F. Gunkel (Eds), Global and regional controls on biogenic sedimentation. I. Reef Evolution. Research Reports – Göttinger Arbeiten Geologie und Paläontologie, Sb2, 203–205.
8. Bjørlykke, K. 2010. Compaction of sedimentary rocks including shales, sandstones and carbonates, In: K. Bjørlykke (Ed.), Petroleum Geoscience: From Sedimentary Environments to rock Physics, pp. 329–337. Springer; Berlin-Heidelberg.
9. Braithwaite, C.J.R. 1989. Stylolites as open fluid conduits. Marine and Petroleum Geology, 6, 93–96.
10. Broichhausen, H., Littke, R. and Hantschel, T. 2005. Mudstone compaction and its influence on overpressure generation, elucidated by a 3D case study in the North Sea. International Journal of Earth Sciences, 94, 956–978.
11. Budd, D.A. 2002. The relative roles of compaction and early cementation in the destruction of permeability in carbonate grainstones: a case study from the Paleogene of westcentral Florida, USA. Journal of Sedimentary Research, 72, 116–128.
12. Buxton, T.M. and Sibley, D.F. 1981. Pressure solution features in a shallow buried limestone. Journal of Sedimentary Petrology, 51, 19–26.
13. Chanda, S.K., Bhattacharyya, A. and Sarkar, S. 2011. Deformation of ooids by compaction in the Precambrian Bhander Limestone, India: Implications for lithification. Geological Society of America Bulletin, 88, 1577–1585.
14. Clari, P. and Martire, L. 1996. Interplay of cementation, mechanical compaction, and chemical compaction in nodular limestones of the Rosso Ammonitico Veronese (Middle-Upper Jurassic, northeastern Italy). Journal of Sedimentary Reasearch, 66, 447–458.
15. Coogan, A.H. 1970. Measurement of compaction in oolitic grainstone. Journal of Sedimentary Petrology, 40, 921–929.
16. Croizé, D., Ehrenberg, S.N., Bjørlykke, K., Renard, F. and Jahren, J. 2010. Petrophysical properties of bioclastic platform carbonates: implications for porosity controls during burial, Marine and Petroleum Geology, 27, 1765–1774.
17. Czerniakowski, L.A., Lohmann, K.C. and Wilson, J.L. 1984. Closed-system marine burial diagenesis: isotopic data from the Austin Chalk and its components. Sedimentology, 31, 863–877.
18. Doglioni, C. and Goldhammer, R.K. 1988. Compaction-induced subsidence in the margin of a carbonate platform. Basin Research, 1, 237–246.
19. Dunham, R.J. 1962. Classification of carbonate rocks according to depositional texture. In: W.E. Ham (Ed.), Classification of carbonate rocks. American Association of Petroleum Geologists Memoir, 1, 108–121.
20. Dunnington, H.V. 1967. Aspects of diagenesis and shape hange in stylolitic limestone reservoirs. Proceeding of the Seventh World Petroleum Congress, pp. 337–352. Mexico.
21. Dżułyński, S. 1952. The origin of the Upper Jurassic limestone in the Cracow area. Rocznik Polskiego Towarzystwa Geologicznego, 21, 125–180. In Polish with Russian and English summaries
22. Flügel, E. 2004. Microfacies of Carbonate Rocks, Analysis, Interpretation and Application, 1–976. Springer; New York.
23. Garrison, R.E. 1981. Diagenesis of oceanic carbonate sediments: a review of the DSDP perspective. In: R.E. Warme, R.G. Douglas and E.L. Winterer (Eds), The Deep Sea Drilling Project: A Decade of Progress. Special Publication of Society of Economic Paleontologists and Mineralogists, 32, 181–207.
24. Glazer, Z. and Malinowski, J. 1991. Geologia i geotechnika dla inżynierów budownictwa,1–392. Wydawnictwo Naukowe PWN; Warszawa.
25. Goldhammer, R.K. 1997. Compaction and decompaction algorithms for sedimentary carbonates. Journal of Sedimentary Reasearch, 67, 26–35.
26. Gómez, J.J. and Fernández-López, S. 1994. Condesation processes in shallow platforms. Sedimentary Geology, 92, 147–159.
27. Gołębiowska, B., Pieczka, A., Rzepa, G., Matyszkiewicz, J. and Krajewski, M. 2010. Iodargyrite from Zalas (Cracow area, Poland) as an indicator of Oligocene-Miocene aridity in Central Europe. Palaeogeography, Palaeoclimatology, Palaeoecology, 296, 130–137.
28. Gradziński, R. 2009. Geological map of Krakow region without Quaternary and terrestrial Tertiary deposits. Wydawnictwo Instytutu Nauk Geologicznych PAN; Kraków.
29. Gwinner, M.P. 1976. Origin of the Upper Jurassic Limestones of the Swabian Alb (Southern Germany). Contributions to Sedimentology, 5, 1–76.
30. Heydari, E. 2000. Porosity loss, fluid flow, and mass transfer in limestone reservoirs: application to the Upper Jurassic Smackover Formation, Mississipi. American Association of Petroleum Geologists Bulletin, 84, 100–118.
31. Holcomb, D., Rudnicki, J.W., Issen, K.A. and Sternlof, K. 2007. Compaction localization in the Earth and the laboratory: state of the research and research directions. Acta Geotechnica, 2, 1–15.
32. Huber, S. 1987. Drucklösungserscheinungen in Karbonaten des Oxford 1 und Kimmeridge 1 der Bohrung TB-3 Saulgau (Oberschwaben). Facies, 17, 109–120.
33. Hunt, D., Fitchen, W.M., Swarbrick, R. and Allsop, T. 1995. Differential compaction as a primary control of sequence architecture and development in the Permian Basin: geological significance and potential as a hydrocarbon exploration model. In: R.F. Garber and R.F. Lindsay (Eds), Wolfcampian–Leonardian Shelf Margin Facies of the Sierra Diablo: Seismic Models for Subsurface Exploration. West Texas Geological Society Publications, 95–97, 83–104.
34. Katsman, R. and Aharonow, E. 2006. A study of compaction bands originating from crack, notches and compacted defects. Journal of Structural Geology, 28, 508–518.
35. Kenter, J.A.M., Fouke, B.W. and Reinders, M. 1997. Effects of differential cementation on the sonic velocities of upper Cretaceous skeletal grainstones (southeastern Netherlands). Journal of Sedimentary Research, 67, 178–185.
36. Kochman, A. 2010. Wpływ kompakcji na architekturę facjalną późnojurajskiego basenu południowej części Wyżyny Krakowsko-Częstochowskiej. Ph.D. Thesis, AGH University of Science and Technology, Kraków, Poland.
37. Kochman, A. and Matyszkiewicz, J. 2012. Microbial laminites with coprolites from Upper Jurassic carbonate buildups complex (Kraków-Częstochowa Upland; Poland). Annales Societatis Geologorum Poloniae, 82, 331–347.
38. Krajewski, M. 2000. Lithology and morphology of Upper Jurassic carbonate buildups in the Będkowska Velley, Kraków region, southern Poland. Annales Societatis Geologorum Poloniae, 70, 151–163.
39. Krajewski, M. 2001. Upper Jurassic chalky limestones in the Zakrzówek Horst, Kraków, Kraków-Wieluń Upland (South Poland). Annales Societatis Geologorum Poloniae, 71, 43–51.
40. Krajewski, M. and Matyszkiewicz, J. 2004. Rozwój i architektura facjalna górnojurajskich kompleksów budowli węglanowych w SW części Wyżyny Krakowskiej. In: J. Partyka (Ed.), Zróżnicowanie i przemiany środowiska przyrodniczo-kulturowego Wyżyny Krakowsko-Częstochowskiej, Tom I, Przyroda, pp. 27–34. Ojców.
41. Kutek, J. 1994. Jurassic tectonic events in south-eastern cratonic Poland. Acta Geologica Polonica, 44, 167–221.
42. Lasemi, Z., Sandberg, P.A. and Boardman, M.H. 1990. New microtextural criterion for differentiation of compaction and early cementation in fine-grained limestones. Geology, 18, 370–373.
43. Logan, B.W. and Semeniuk, V. 1976. Dynamic metamorphism process and products in Devonian carbonate rocks, Canning basin, western Australia. Geological Society of Australia, Special Publication, 6, 1–138.
44. Lucia, F. 1999. Carbonate Reservoir Characterization, 1–226. Springer; New York.
45. Łuczyński, P. 2001. Pressure-solution and chemical compaction of condensed Middle Jurassic deposits, High-Tatric series, Tatra Mountains. Geologica Carpathica, 52, 91–102.
46. Marcinowski, R. 1970. Turbidites in Upper Oxfordian limestones at Jaskrów in the Polish Jura Chain. Bulletin of the Polish Academy of Sciences-Earth Sciences, 18, 219–225.
47. Martire, L. 1996. Stratigraphy, facies and synsedimentary tectonics in the Jurassic Rosso Ammonitico Veronese (Altopiano di Asiago, NE Italy). Facies, 35, 209–236.
48. Martire, L. and Clari, P. 1994. Evaluation of sedimentation rates in Jurassic-Cretaceous pelagic facies of the Trento Plateau: relevance of discontinuities and compaction. Giornale di Geologia, 56,193–209.
49. Matyszkiewicz, J. 1989. Sedimentation and diagenesis of the Upper Oxfordian cyanobacterial-sponge limestones in Piekary near Kraków, Annales Societatis Geologorum Poloniae, 59, 201–232.
50. Matyszkiewicz, J. 1994. Remarks on the Deposition of Pseudonodular Limestones in the Cracow Area (Oxfordian, Southern Poland). Berliner Geowissenschaftliche Abhandlungen, E13, 419–439.
51. Matyszkiewicz, J. 1996. The Significance of Saccocoma-calciturbidites for the analysis of the Polish Epicontinental Late Jurassic Basin: an example from the Southern Cracow-Wieluń Upland (Poland). Facies, 34, 23–40.
52. Matyszkiewicz, J. 1997. Microfacies, sedimentation and some aspects of diagenesis of Upper Jurassic sediments from the elevated part of the Northern peri-Tethyan Shelf, a comprative study on the Lochen area (Schwäbische Alb) and the Cracow area (Cracow-Wielun Upland, Poland). Berliner Geowissenschaftliche Abhandlungen, E21, 1–111.
53. Matyszkiewicz, J. 1999. Sea-bottom relief versus differential compaction in ancient platform carbonates: a critical reassessment of an example from Upper Jurassic of the Cracow-Wieluń Upland. Annales Societatis Geologorum Poloniae, 69, 63–79.
54. Matyszkiewicz, J. and Krajewski, M. 1996. Lithology and sedimentation of Upper Jurassic massive limestones near Bolechowice, Kraków-Wieluń Upland, south Poland. Annales Societatis Geologorum Poloniae, 66, 285–301.
55. Matyszkiewicz, J. and Krajewski, M. 2007. Litologia i zróżnicowanie ofacjalne wapieni górnojurajskich okolic dolin Szklarki i Będkowskiej. Tomy Jurajskie, 4, 87–94.
56. Matyszkiewicz, J., Kochman, A. and Duś, A. 2012. Influence of local sedimentary conditions on development of microbialites in the Oxfordian carbonate buildups from the southern part of the Kraków-Częstochowa Upland (south Poland). Sedimentary Geology, 263–264, 109–132.
57. Matyszkiewicz, J., Krajewski, M. and Żaba, J. 2006. Structural control on the distribution of Upper Jurassic carbonate buildups in the Kraków-Wieluń Upland (South Poland). Neues Jahrbuch für Geologie und Paläontologie Monatshefte, 3, 182–192.
58. Moore, C.H. 2001. Carbonate Reservoirs, Porosity Evolution and Diagenesis in Sequence Stratigraphic Framework, 1–460. Elsevier; Amsterdam.
59. Myślińska, E. 1998. Laboratoryjne badania gruntów, 1–278. Wydawnictwo Naukowe PWN; Warszawa.
60. Nichols, G. 1999. Sedimentology and Stratigraphy, 1–420. Wiley-Blackwell; Chichester.
61. Perrier, R. and Quiblier, J. 1974. Thickness changes in sedimentary layers during compaction history; methods for quantitative evaluation. American Association of Petroleum Geologists Bulletin, 58, 507–520.
62. Pratt, B.R. 1982. Stromatolitic framework of carbonate mudmounds. Journal of Sedimentary Petrology, 52, 1203–1227.
63. Railsback, L.B. 1993. Contrasting styles of chemical compaction in the Upper Pennsylvanian Dennis Formation in the Midcontinent region, USA. Journal of Sedimentary Petrology, 63, 61–72.
64. Ricken, W. 1986. Diagenetic Bedding, A Model for Marl-limestone Alternations, 1–210. Springer; Berlin.
65. Ricken, W. 1987. The carbonate compaction law: a new tool. Sedimentology, 34, 571–584.
66. Rusciadelli, G. and Di Simone, S. 2007. Differential compaction as a control on depositional architectures across the Maiella carbonate platform margin (central Apennines, Italy). Sedimentary Geology, 196, 133–155.
67. Saller, A.H. 1996. Differential compaction and basinward tilting of the prograding Capitan reef complex, Permian, west Texas and southeast New Mexico, USA. Sedimentary Geology, 101, 21–30.
68. Sandberg, P.A. 1983. An oscillating trend in Phanerozoic nonskeletal carbonate mineralogy. Nature, 305, 19–22.
69. Sandberg, P.A. 1985. Aragonite cements and their occurrence in ancient limestones. In: N. Schneidermann and P.M. Harris (Eds.), Carbonate Cements. Special Publication of the Society of Economic Paleontologists and Mineralogists, 36, 33–57.
70. Schlanger, S.O. and Douglas, R.G. 1974. The pelagic oozechalk-limestone transition and its implications for marine stratigraphy. In: K.J. Hsü and H.C. Jenkyns (Eds), Pelagic Sediments. Special Publication of the International Association of Sedimentologists, 1, 117–148.
71. Schmid, D.U. 1996. Marine Mikrobolithe und Mikroinkrustierer aus dem Jura. Profil, 9, 101–251.
72. Sellwood, B.W. 1992. Principle of carbonate diagenesis. In: A. Parker and B.W. Sellwood (Eds), Quantitative diagenesis: recent developments and applications to reservoir geology. NATO Advanced Study Institute, Reading, 1–25.
73. Shinn, E.A. and Robbin, D.M. 1983. Mechanical and chemical compaction in fine-grained shallow-water limestones. Journal of Sedimentary Petrology, 53, 595–618.
74. Suetnova, E. and Vasseur, G. 2000. 1-D modelling rock compaction in sedimentary basins using a visco-elastic rheology, Earth and Planetary Science Letters, 178, 373–383.
75. Tucker, M.E. and Wright, V.P. 2004. Carbonate Sedimentology, 1–491. Blackwell Science; Oxford.
76. Wanless, H.R. 1979. Limestone response to stress: pressure solution and dolomitization. Journal of Sedimentary Petrology, 49, 437–462.
77. Wentworth, C.K. 1922. A scale of grade and class terms for clastic sediments. Journal of Geology, 30, 377–392.
78. Westphal, H. 1997. Carbonate Platform Slopes –A Record of Changing Conditions, The Pliocene of the Bahamas, 1–197. Springer; Berlin–Heidelberg–New York.
79. Westphal, H. and Munnecke, A. 1997. Mechanical compaction versus early cementation in fine-grained limestones: differentiation by the preservation of organic microfossils. Sedimentary Geology, 112, 33–42.
80. Ziółkowski, P. 2005. Deformacje skamieniałości śladowych a proces kompakcji w wapieniach mikrytowych górnej jury okolic Korzkwi (Wyżyna Krakowska). Tomy Jurajskie, 3, 55–61.
DOI :
Cytuj : Kennedy, W. J. ,Walaszczyk, I. ,Kopaevich, L. ,Beniamovski, V. N. ,Wilmsen, M. ,Storm, M. ,Fürsich, F. ,Majidifard, M. ,Gasiński, M. A. ,Olshtynska, A. ,Uchman, A. ,Kennedy, W. J. ,Klinger, H. ,Machalski, M. ,Kennedy, W. J. ,Schneider, S. ,Jäger, M. ,Kroh, A. ,Mitterer, A. ,Niebuhr, B. ,Vodrážka, R. ,Wilmsen, M. ,Wood, C. J. ,Zágoršek, K. ,Jurkowska, A. ,Uchman, A. ,Kennedy, W. J. ,Walaszczyk, I. ,Gale, A. ,Dembicz, K. ,Praszkier, T. ,Fedorowski, J. ,Kullmann, J. ,Kochman, A. ,Matyszkiewicz, J. , Experimental method for estimation of compaction in the Oxfordian bedded limestones of the southern Kraków-Częstochowa Upland, Southern Poland. Acta Geologica Polonica Vol. 63, no. 4/2013
facebook