Facies and integrated stratigraphy of the Upper Turonian (Upper Cretaceous) Grossberg Formation south of Regensburg (Bavaria, southern Germany)

Czasopismo : Acta Geologica Polonica
Tytuł artykułu : Facies and integrated stratigraphy of the Upper Turonian (Upper Cretaceous) Grossberg Formation south of Regensburg (Bavaria, southern Germany)

Autorzy :
Walaszczyk, I.
Faculty of Geology, University of Warsaw, Al. Żwirki i Wigury 93, PL-02-089 Warsaw, Poland, i.walaszczyk@uw.edu.pl,
Remin, Z.
Faculty of Geology, University of Warsaw, Al. Zwirki i Wigury 93, PL-02-089 Warsaw, Poland,
Keutgen, N.
ZFiPBR, Uniwersytet Techniczno-Przyrodniczy Bydgoszcz, ul. Bernardyńska 6/8, PL-85-029 Bydgoszcz, Poland, keutgen@utp.edu.pl,
Świerczewska-Gładysz, E.
Institute of Earth Science, University of Lodz, ul. Narutowicza 88, 90-139 Łódź. Poland, eswiercz@geo.uni.lodz.pl,
Walaszczyk, I.
Faculty of Geology, University of Warsaw, Al. Żwirki i Wigury 93, PL-02-089 Warsaw, Poland, i.walaszczyk@uw.edu.pl,
Niebuhr, B.
Bayerisches Landesamt fur Umwelt, Abt. 10 Geologischer Dienst, Leopoldstr. 30, D- 95615 Marktredwitz, Germany ; Senckenberg Naturhistorische Sammlungen Dresden, Museum fur Mineralogie und Geologie, Sektion Palaozoologie, Konigsbrucker Landstr. 159, D-011, niebuhr.birgit@googlemail.com,
Abstrakty : The Upper Turonian Grossberg Formation of the Regensburg area (Danubian Cretaceous Group, Bavaria, southern Germany) has a mean thickness of 20-25 m and consists of sandy bioclastic calcarenites and calcareous sandstones which are rich in bryozoans, serpulids and bivalves (oysters, rudists, inoceramids). Eight facies types have been recognized that characterize deposition on a southward dipping homoclinal ramp: the inner ramp sub-environment was characterized by high-energy sandwave deposits (sandy bioclastic rud- and grainstones, bioclastic sandstones) with sheltered inter-shoal areas. In mid-ramp settings, bioturbated, glauconitic, calcareous sand- and siltstones as well as bioturbated, bioclastic wacke- and packstones predominate. The carbonate grain association of the Grossberg Formation describes a temperate bryomol facies with indicators of warm-water influences. An inferred surplus of land-derived nutrients resulted in eutrophic conditions and favoured the heterozoan communities of the Grossberg Ramp. Carbon stable isotope geochemistry cannot significantly contribute to the stratigraphic calibration of the Grossberg Formation due to the depleted and trendless bulk-rock [delta^13]C values, probably resulting from a shallow-water aquafacies with depleted [delta^13]C DIC values and low [delta^13]C values of syndepositional and early diagenetic carbonate phases. However, strongly enriched skeletal calcite [delta^13]C values support a correlation of the Grossberg Formation with the mid-Late Turonian positive Hitch Wood isotope event (Hyphantoceras Event of northern Germany). This interpretation is supported by biostratigraphic data and a range from the Mytiloides striatoconcentricus Zone into the lower My. scupini Zone is indicated by inoceramid bivalves. Both the base and top of the Grossberg Formation are characterized by unconformities. Sequence boundary SB Tu 4 at the base is a major regional erosion surface (erosional truncation of the underlying Kagerhoh Formation in the Regensburg area, fluvial incision at the base of the Seugast Member of the Roding Formation in the Bodenwohr area towards the north and northeast). It is suggested that this unconformity corresponds to a major sea-level drop recognized in many other Cretaceous basins below the Hitch Wood or Hyphantoceras Event. The transgression and highstand of the Grossberg Formation is concomitant to the deposition of the fluvial Seugast Member and the onlap of the marginal-marine. Veldensteiner Sandstein. onto the Frankische Alb. The unconformity at the top of the Grossberg Formation (late Late Turonian SB Tu 5) is indicated by a ferruginous firm-/ hardground and an underlying zone of strongly depleted [delta^13]C values. The abrupt superposition by deeper marine marls of the lower Hellkofen Formation (uppermost Turonian.Lower Coniacian) may be connected with inversion tectonics at the southwestern margin of the Bohemian Massif.

Słowa kluczowe : kreda, środowisko depozycyjne, turon, zintegrowana stratygrafia, Danubian Cretaceous Group, Depositional environment, Grossberg Formation, Integrated stratigraphy, Sedimentary unconformities, Turonian,
Wydawnictwo : Faculty of Geology of the University of Warsaw
Rocznik : 2012
Numer : Vol. 62, no. 4
Strony : 595 – 615
Bibliografia : 1. Anderson, T.F. and Arthur, M.A. 1983. Stable isotopes of oxygen and carbon and their application to sedimentologic and palaeoenvironmental problems. In: Arthur, M.A., Anderson, T.F., Kaplan, I.F., Veizer, J. and Land, L.S. (Eds), Stable Isotopes in Sedimentary Geology. SEPM (Society for Sedimentary Geology), Short Course, 10, I.1–I.151.
2. Bauberger, W., Cramer, P. and Tillmann, H. 1969. Erläuterungen zur geologischen Karte von Bayern 1:25000, Blatt Nr. 6938 Regensburg, pp. 1–414. München (BGL).
3. Brasier, M.D 1995. Fossil indicators of nutrient levels. 1: Eutrophication and climatic change. In: Bosence, D.W. and Allison, P.A. (Eds), Marine palaeoenvironmental analysis from fossils. Geological Society of London, Special Publication, 83, 113–132.
4. Brunhuber, A. 1917. Die geologischen Verhältnisse von Regensburg und Umgebung. Naturwissenschaftlicher Verein Regensburg, pp. 1–107. Regensburg.
5. Burchette, T.P. and Wright, V.P. 1992. Carbonate ramp depositional systems. Sedimentary Geology, 79, 3–57.
6. Caron, M. 1985. Cretaceous planktic foraminifera. In: Bolli, H.M., Saunders, J.B. and Perch-Nielsen, K. (Eds), Plankton Stratigraphy, 17–86. Cambridge University Press; Cambridge.
7. Carranante, G., Esteban, M., Milliman, J.D. and Simone, L. 1988. Carbonate lithofacies as paleolatitude indicators: problems and limitations. Sedimentary Geology, 60, 333–346.
8. Catuneanu, O., Galloway, W.E., Kendall, C.G.St.C., Miall, A.D., Posamentier, H.W., Strasser, A. and Tucker, M.E. 2011. Sequence stratigraphy: Methodology and nomenclature. Newsletters on Stratigraphy, 44, 173–245.
9. Coe, A.L. 2003. The sedimentary record of sea-level change, pp. 1–288. Cambridge University Press; Cambridge.
10. Dacqué, E. 1939. Die Fauna der Regensburg–Kehlheimer Oberkreide (mit Ausschluss der Spongien und Bryozoen). Abhandlungen der Bayerischen Akademie der Wissenschaften, Mathematisch-Naturwissenschaftliche Abteilung, Neue Fassung, 45, pp. 1–218. C.H. Beck; München.
11. Dunham, R.J. 1962. Classification of carbonate rocks according to depositional texture. In: Ham, W.E. (Ed.), Classification of carbonate rocks. American Association of Petroleum Geology, Memoir, 1, 108–121.
12. Embry, A.F. and Clovan, J.E. 1972. Absolute water depth limits of Late Devonian paleoecological zones. Geologische Rundschau, 61, 672–686.
13. Flügel, E. 2004. Microfacies of carbonate rocks, pp. 1–997. Springer Verlag; Berlin, Heidelberg.
14. Gale, A.S. 1996. Turonian correlation and sequence stratigraphy of the Chalk in southern England. In: Hesselbo, S.P. and Parkinson, D.N. (Eds), Sequence stratigraphy in British Geology. Geological Society of London, Special Publication, 103, 177–195.
15. Hallam, A. 1992. Phanerozoic sea-level changes, pp. 1–266. Columbia University Press; New York.
16. Hancock, J.M. and Kauffman, E.G. 1979. The great transgressions of the Late Cretaceous. Journal of the Geological Society of London, 136, 175–186.
17. Immenhauser, A., Holmden, C. and Patterson, W.P. 2008. Interpreting the carbon-isotope record of ancient shallow epeiric seas: Lessons from the Recent. In: Pratt, B. and Holmden, C. (Eds), Dynamics of epeiric seas. Geological Association of Canada, Special Paper, 48, 137–174.
18. James, N.P. 1997. The cool-water carbonate depositional realm. SEPM (Society for Sedimentary Geology), Special Publication, 56, 1–20.
19. Jarvis, I., Gale, A.G., Jenkyns, H.C. and Pearce, M.A. 2006. Secular variation in Late Cretaceous carbon isotopes: a new δ13C carbonate reference curve for the Cenomanian–Campanian (99.6–70.6 Ma). Geological Magazine, 143, 561–608.
20. Kley, J. and Voigt, T. 2008. Late Cretaceous intraplate thrusting in central Europe: Effect of Africa-Iberia-Europe convergence, not Alpine collision. Geology, 36, 839–842.
21. Korsitzke, H.-D. 1995. Planktonische Foraminiferen der Oberkreide (Cenoman–Campan) am nördlichen Tethysrand (süddeutscher Molasse-Untergrund, Regensburger Kreide) – Systematik, Stratigraphie sowie Palökologie der Foraminiferengesamtfauna. Documenta naturae, 92, 1–274.
22. Lehner, L. 1935. Über das Turon auf dem Fränkischen Jura. Centralblatt für Mineralogie, Geologie und Paläontologie, B 8, 223–238.
23. Löser, H. 1996. A new octocoral from the Upper Cretaceous of East Bavaria. Neues Jahrbuch für Geologie und Paläontologie, Monatshefte, 1996, 485–489.
24. Meyer, R.K.F. 1996. Kreide. In: Erläuterungen zur Geologischen Karte von Bayern 1:500000, 112–125.
25. Nelson, C.S. 1988. An introductory perspective on non-tropical shelf carbonates. Sedimentary Geology, 60, 3–12.
26. Niebuhr, B. 2011. Die Bohrung Pfakofen LAM B2/09 südlich von Regensburg (Turonium / Coniacium-Grenzbereich) – ein Beitrag zur Stratigraphie der Danubischen KreideGruppe (Bayern, Süd-Deutschland). Geologische Blätter für Nordost-Bayern, 61, 97–116.
27. Niebuhr. B., Pürner. T. and Wilmsen, M. 2009. Lithostratigraphie der außeralpinen Kreide Bayerns. Schriftenreihe der Deutschen Gesellschaft für Geowissenschaften, 65, 7–58.
28. Niebuhr, B., Wilmsen, M., Chellouche, P., Richardt, N., and Pürner, T. 2011. Stratigraphy and facies of the Turonian (Upper Cretaceous) Roding Formation at the southwestern margin of the Bohemian Massif (southern Germany, Bavaria). Zeitschrift der Deutschen Gesellschaft für Geowissenschaften, 162, 295–316.
29. Oschmann, F. 1958. Erläuterungen zur Geologischen Karte von Bayern 1:25000 Blatt Nr. 7038 Bad Abbach, pp. 1–184. München (BGL).
30. Patterson, W.P. and Walter, L.M. 1994. Depletion of δ13C in seawater ΣCO2 on modern carbonate platforms: significance for the carbon isotope record of carbonates. Geology, 22, 885–888.
31. Philip, J. and Floquet, M. 2000. Late Cenomanian (94.7–93.5). In: Dercourt, J., Gaetani, M., Vrielynck, B., Barrier, E., Biju-Duval, B., Brunet, M.F., Cadet, J.P., Crasquin, S. and Sandulescu, M. (Eds), Atlas Peri-Tethys palaeogeographical maps. CCGM/CGMW, 129–136.
32. Richardt, N. and Wilmsen, M. 2012. Lower Upper Cretaceous standard section of the southern Münsterland (NWGermany): carbon stable-isotopes and sequence stratigraphy. Newsletters on Stratigraphy, 45, 1–24.
33. Richardt, N., Wilmsen, M. & Niebuhr, B. in press. Late Cenomanian–Early Turonian facies development and sea-level changes in the Bodenwöhrer Senke (Danubian Cretaceous Group, Bavaria, Germany). Facies, 59, DOI 10.1007/s10347-012-0337-x.
34. Röper, M. and Neumeier, F. 1995. Neue Fossilfunde aus der Regensburger Oberkreide, Teil 2: Der Großberger Sandstein von Eggmühl (Oberturon). Fossilien, 1995, 367–372.
35. Schneider, S., Niebuhr, B., Wilmsen, M. and Vodràžka, R. 2011. Between the Alb and the Alps – The fauna of the Upper Cretaceous Sandbach Formation (Passau region, SE Germany). Bulletin of Geosciences, 86, 785–816.
36. Shackelton, N.J. and Kenneth, J.P. 1975. Paleotemperature history of the Cenozoic and initiation of Antarctic glaciation: oxygen and carbon isotope analysis in DSDP sites 277, 279 and 281. Initial Report of the Deep Sea Drilling Project, 29, 743–755.
37. Tröger, K-A., Niebuhr, B. and Wilmsen, M. 2009. Inoceramen aus dem Cenomanium bis Coniacium der Danubischen Kreide-Gruppe (Bayern, Süd-Deutschland). Schriftenreihe der Deutschen Gesellschaft für Geowissenschaften, 65, 59–110.
38. Voigt, E. 1962. Frühdiagenetische Deformation der turonen Plänerkalke bei Halle / Westf. als Folge einer Großgleitung unter besonderer Berücksichtigung des Phacoid-Problems. Mitteilungen aus dem Geologischen Staatsinstitut in Hamburg, 31, 146–275.
39. Voigt, E. 1995. Diaperoecia neumeieri, eine neue multilamelläre cyclostome Bryozoenart aus dem Turon von Zaitzkofen (Oberpfalz, Bayern). Mitteilungen der Bayerischen Staatssammlung für Paläontologie und historische Geologie, 35, 9–26.
40. Voigt, S. and Hilbrecht, H., 1997. Late Cretaceous carbon isotope stratigraphy in Europe: Correlation and relations with sea level and sediment stability. Palaeogeography, Palaeoclimatology, Palaeoecology, 134, 39–59.
41. Voigt, S., Gale, A.S. and Flögel, S. 2004. Midlatitude shelf seas in the Cenomanian-Turonian greenhouse world: Temperature evolution and North Atlantic circulation. Paleoceanography, 19, PA4020.
42. Voigt, S., Gale, A.S. and Voigt, T. 2006a. Sea level change, carbon cycling and palaeoclimate during the Late Cenomanian of northwest Europe; an integrated palaeoenvironmental analysis. Cretaceous Research, 27, 836–858.
43. Voigt, T., Wiese, F., Eynatten, H. von, Franzke, H.-J. and Gaupp, R. 2006b. Facies evolution of syntectonic Upper Cretaceous deposits in the Subhercynian Cretaceous Basin and adjoining areas (Germany). Zeitschrift der Deutschen Gesellschaft für Geowissenschaften, 157, 203–243.
44. Weidich, F. 1987. Neue stratigraphische Ergebnisse aus der Süddeutschen Kreide, 2: Die Weillohe-Mergel (Coniac) im Golf von Regensburg. Neues Jahrbuch für Geologie und Paläontologie, Monatshefte, 1987, 440–448
45. Wiese, F., 1999. Stable isotope data (δ13C, δ18O) from the Middle and Upper Turonian (Upper Cretaceous) of Liencres (Cantabria, northern Spain) with a comparison to northern Germany (Söhlde & Salzgitter-Salder). Newsletters on Stratigraphy, 37, 37–62.
46. Wiese, F. 2010. Stratigraphic re-assessment of the Seewen Formation in the classic Helvetic key locality ‘‘An der Schanz’’ quarry, Burgberg (Bavarian Alps; Turonian, Coniacian): biostratigraphy and δ13C correlations. Cretaceous Research, 31, 130–146.
47. Wiese, F. and Kröger, B. 1998. Evidence for a shallowing event in the Upper Turonian (Cretaceous) Mytiloides scupini Zone of northern Germany. Acta Geologica Polonica, 48, 265–284.
48. Wiese, F., Čech, S., Ekrt, B., Košták, M., Mazuch, M. and Voigt, S. 2004. The Upper Turonian of the Bohemian Cretaceous Basin (Czech Republic) exemplified by the Úpohlavy working quarry: integrated stratigraphy and palaeoceanography of a gateway to the Tethys. Cretaceous Research, 25, 329–352.
49. Wilmsen, M. 2003. Sequence stratigraphy and palaeoceanography of the Cenomanian Stage in northern Germany. Cretaceous Research, 24, 525–568.
50. Wilmsen, M. and Niebuhr, B. 2010. On the age of the Upper Cretaceous transgression between Regensburg and Neuburg an der Donau (Bavaria, southern Germany). Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, 256, 267–278.
51. Wilmsen, M., Wood, C.J., Niebuhr, B. and Kaplan, U. 2009. Cenomanian–Coniacian ammonoids of the Danubian Cretaceous Group (Bavaria, southern Germany). Schriftenreihe der Deutschen Gesellschaft für Geowissenschaften, 65, 111–124.
52. Wilmsen, M., Niebuhr, B., Chellouche, P., Pürner, T. and Kling, M. 2010a. Facies pattern and sea-level dynamics of the early Late Cretaceous transgression: a case study from the lower Danubian Cretaceous Group (Bavaria, southern Germany). Facies, 56, 483–507.
53. Wilmsen, M., Niebuhr, B. and Chellouche, P. 2010b. Occurrence and significance of Cenomanian belemnites in the lower Danubian Cretaceous Group (Bavaria, southern Germany). Acta Geologica Polonica, 60 (2), 231–241.
54. Ziegler, P.A. 1990. Geological atlas of Western and Central Europe. 2nd ed., Shell Intern. Petrol., Maatschappij B.V., pp. 1–239. Amsterdam.
55. Žítt, J., Vodrážka, R., Hradecká, L., Svobodová, M. and Zágoršek, K. 2006. Late Cretaceous environments and communities as recorded at Chrtníky (Bohemian Cretaceous Basin, Czech Republic). Bulletin of Geosciences, 81, 43–79.
56. Žítt, J., Vodrážka, R., Hradecká, L. and Svobodová, M. 2010. Palaeoenvironments and facies on a progressively flooded rocky island (Upper Cenomanian–Lower Turonian, Bohemian Cretaceous Basin). Journal of the National Museum (Prague), Natural History Series, 179, 223–234.
Cytuj : Walaszczyk, I. ,Remin, Z. ,Keutgen, N. ,Świerczewska-Gładysz, E. ,Walaszczyk, I. ,Niebuhr, B. , Facies and integrated stratigraphy of the Upper Turonian (Upper Cretaceous) Grossberg Formation south of Regensburg (Bavaria, southern Germany). Acta Geologica Polonica Vol. 62, no. 4/2012