Journal : Acta Geophysica
Article : Flare forecasting based on sunspot-groups characteristics

Authors :
Lilensten, J.
Laboratoire de Planétologie de Grenoble, OSUG-CNRS, Grenoble, France, jean.lilensten@obs.ujf-grenoble.fr,
Zuccarello, F.
Dipartimento di Fisica e Astronomia, Universitá di Catania, Catania, Italy, fzu@oact.inaf.it,
Zuccarello, F.
Dipartimento di Fisica e Astronomia, Universitá di Catania, Catania, Italy, fzu@oact.inaf.it,
Lundstedt, H.
Swedish Institute of Space Physics, Lund, Sweden, henrik@lund.irf.se,
Kretzschmar, M.
LPCE/CNRS, Orléans, France, matthieu.kretzschmar@cnrs-orleans.fr,
Contarino, L.
INAF Osservatorio Astrofisico di Catania, Catania, Italy, lcont@oact.inaf.it,
Abstract : Our comprehension of solar flares is still lacking in many aspects and the possibility of observing active regions during the first phases of flare occurrence is limited by our capability of doing accurate flare forecasting. In order to give a contribution to this aspect, we focused our attention on the characteristics that must be fulfilled by sunspot-groups in order to be flare-productive. We addressed this problem using a statistical approach: first, we analyzed sunspot-groups parameters (i.e., Zürich class, magnetic configuration, area, morphology of the penumbra) and evolution; then, we performed a flare forecasting campaign, based on the results obtained in the first phase and on real-time observations. The results obtained by comparing the flare forecasting probability with the number of flares that have actually occurred are quite encouraging; we plan to improve this procedure by including a bigger statistical sampling.

Keywords : solar flares, sunspot-groups, flare forecasting,
Publishing house : Instytut Geofizyki PAN
Publication date : 2009
Number : Vol. 57, no. 1
Page : 52 – 63

Bibliography
: Antiochos, S.K., C.R. DeVore, and J.A. Klimchuk (1999), A model for solar coronal mass ejections, Astrophys. J. 510, 1, 485-493,
Aulanier, G., E.E. DeLuca, S.K. Antiochos, R.A. McMullen, and L. Golub (2000), The topology and evolution of the Bastille Day flare, Astrophys. J. 540, 2, 1126-1142,
Canfield, R.C., H.S. Hudson, and D.E. McKenzie (1999), Sigmoidal morphology and eruptive solar activity, Geophys. Res. Lett. 26, 6, 627-630,
Carmichael, H. (1964), A process for flares, In: W.N. Hess (ed.), Proc. AAS-NASA Symp. “The Physics of Solar Flares”, Washington, NASA, Science and Technical Information Division, 50, 451-456.
Chae, J. (2001), Observational determination of the rate of magnetic helicity transport through the solar surface via the horizontal motion of field line footpoints, Astrophys. J. 560, 1, L95-L98,
Démoulin, P., C.H. Mandrini, L. Van Driel-Gesztely, M.C. Lopez Fuentes, and G. Aulanier (2002), The magnetic helicity injected by shearing motions, Solar Phys. 207, 1, 87-110,
Falconer, D., R. Moore, and A. Gray (2007), Forecasting solar coronal mass ejections from MDI magnetograms, American Astronomical Society Meeting 210, 2702.
Forbes, T.G., and E.R. Priest (1995), Photospheric magnetic field evolution and eruptive flares, Astrophys. J. 446, 377-389,
Gaizauskas, V., K.L. Harvey, J.W. Harvey, and C. Zwaan (1983), Large-scale patterns formed by solar active regions during the ascending phase of cycle 21,Astrophys. J. 265, 1056-1065,
Gallagher, P.T., Y.-J. Moon, and H. Wang (2002), Active-region monitoring and flare forecasting. I. Data processing and first results, Solar Phys. 209, 1,171-183,
Georgoulis, M.K., and D.M. Rust (2007), Quantitative forecasting of major solar flares, Astrophys. J. 661, 1, L109-L112,
Hagyard, M.J., J.B. Smith Jr., D. Teuber, and E.A. West (1984), A quantitative study relating observed shear in photospheric magnetic fields to repeated flaring, Solar Phys. 91, 1, 115-126,
Heyvaerts, J., E.R. Priest, and D.M. Rust (1977), An emerging flux model for the solar flare phenomenon, Astrophys. J. 216, 123-137,
Hirayama, T. (1974), Theoretical model of flares and prominences. I: Evaporating flare model, Solar Phys. 34, 2, 323-338,
Hirose, S., Y. Uchida, S. Uemura, T. Yamaguchi, and S.B. Cable (2001), A quadruple magnetic source model for arcade flares and X-ray arcade formations outside active regions. II. Dark filament eruption and the associated arcade flare, Astrophys. J. 551, 1, 586-596,
Jing, J., H. Song, V. Abramenko, C. Tan, and H. Wang (2006), The statistical relationship between the photospheric magnetic parameters and the flare productivity of active regions, Astrophys. J. 644, 2, 1273-1277,
Keil, S.L., K.S. Balasubramaniam, L.J. Milano, A. Bayliss, J. Jones, and J. Clark (1999), Dynamical motions as precursors to activity. In: T.R. Rimmele, K.S. Balasubramaniam, and R.R. Radick (eds.), High Resolution Solar Physics: Theory, Observations, and Techniques, ASP Conf. Ser. 183, 540-550.
Kopp, R.A., and G.W. Pneuman (1976), Magnetic reconnection in the corona and the loop prominence phenomenon, Solar Phys. 50, 1, 85-98,
Leka, K.D., R.C. Canfield, A.N. McClymont, and L. van Driel-Gesztely (1996), Evidence for current-carrying emerging flux, Astrophys. J. 462, 547-560
Masuda, S., T. Kosugi, H. Hara, S. Tsuneta, and Y. Ogawara (1994), A loop-top hard X-ray source in a compact solar flare as evidence for magnetic reconnection, Nature 371, 6497, 495-497,
Melrose, D.B. (1997), A solar flare model based on magnetic reconnection between current-carrying loops, Astrophys. J. 486, 521-533,
Priest, E.R., and T.G. Forbes (2000), Magnetic Reconnection: MHD Theory and Applications, Cambridge University Press, Cambridge. Priest, E.R., and T.G. Forbes (2002), The magnetic nature of solar flares, Astron.Astrophys. Rev. 10, 4, 313-377,
Romano, P., F. Zuccarello, and L. Contarino (2005), Observational evidence of the primary role played by photospheric motions in magnetic helicity transport before a filament eruption, Astron. Astrophys. 433, 2, 683-690,
Soru-Escaut I., M.J. Martres, and Z. Mouradian (1985), Singularity of solar rotation and flare productivity, Astron. Astrophys. 145, 19-24.
Stanek, W. (1972), Periodicities in the longitude distribution of sunspots, Solar Phys. 27, 1, 89-106,
Sturrock, P.A. (1966), Model of the high-energy phase of solar flares, Nature 211, 5050, 695-697,
Tanaka, K., and Y. Nakagawa (1973), Force-free magnetic fields and flares of August 1972, Solar Phys. 33, 1, 187-204,
Tandberg-Hanssen, E., and A.G. Emslie (1988), The Physics of Solar Flares, Cambridge University Press, Cambridge, 177 pp.
Ternullo, M., L. Contarino, P. Romano, and F. Zuccarello (2006), A statistical analysis of sunspot groups hosting M and X flares, Astron. Nachr. 327, 1, 36-43,
Tsuneta, S., H. Hara, T. Shimizu, L.W. Acton, K.T. Strong, H.S. Hudson, and Y. Ogawara (1992), Observation of a solar flare at the limb with the YOHKOH Soft X-ray Telescope, Publs. Astron. Soc. Japan 44, 5, L63-L69.
Wheatland, M.S. (2001), Rates of flaring in individual active regions, Solar Phys. 203, 1, 87-106,
Zirin, H. (1998), The Astrophysics of the Sun, Cambridge University Press, Cambridge, 198 pp.
Zuccarello, F. (1992), Peculiar photospheric velocity fields and magnetic energy build-up, Astron. Astrophys. 257, 298-306.
Zuccarello, F., V. Battiato, L. Contarino, P. Romano, and D. Spadaro (2007), Plasma motions in a short-lived filament related to a magnetic flux cancellation, Astron. Astrophys. 468, 1, 299-305,
DOI :
Qute : Lilensten, J. ,Zuccarello, F. ,Zuccarello, F. ,Lundstedt, H. ,Kretzschmar, M. ,Contarino, L. ,Contarino, L. , Flare forecasting based on sunspot-groups characteristics. Acta Geophysica Vol. 57, no. 1/2009
facebook