Fractal analysis of experimentally generated pyroclasts. A tool for volcanic hazard assessment

Czasopismo : Acta Geophysica
Tytuł artykułu : Fractal analysis of experimentally generated pyroclasts. A tool for volcanic hazard assessment

Autorzy :
Vallianatos, F.
Technological Educational Institute of Crete, Laboratory of Geophysics and Seismology, Crete, Greece,,
Tsallis, C.
Centro Brasileiro de Pesquisas Fisicas and National Institute of Science and Technology for Complex Systems, Rio de Janeiro, Brazil,,
Sotolongo-Costa, O.
Catedra de Sistemas Complejos “Henri Poincare”, Universidad de La Habana,,
Celikoglu, A.
Department of Physics, Faculty of Science, Ege University, Izmir, Turkey,,
Abe, S.
Department of Physical Engineering, Mie University, Mie, Japan,,
Bunde, A.
Institut fur Theoretische Physik, Giessen, Germany,,
Donner, R.
Research Domain IV – Transdisciplinary Concepts & Methods, Potsdam Institute for Climate Impact Research, Potsdam, Germany,,
Molchan, G.
International Institute of Earthquake Prediction Theory and Mathematical Geophysics, Russian Academy of Sciences, Moscow, Russia,,
Lee, Y.-T.
Graduate Institute of Geophysics, National Central University, Jhongli, Taiwan,,
Tarraga, M.
Institute of Earth Sciences “Jaume Almera”, CSIC, Barcelona, Spain,,
Perugini, D.
Department of Earth Sciences, University of Perugia, Perugia, Italy,,
Abstrakty : Rapid decompression experiments on natural volcanic rocks mimick explosive eruptions. Fragment size distributions (FSD) of such experimentally generated pyroclasts are investigated using fractal geometry. The fractal dimension of fragmentation, D, of FSD is measured for samples from Unzen (Japan) and Popocatepetl (Mexico) volcanoes. Results show that: (i) FSD are fractal and can be quantified by measuring D values; (ii) D increases linearly with potential energy for fragmentation (PEF) and, thus, with increasing applied pressure; (iii) the rate of increase of D with PEF depends on open porosity: the higher the open porosity, the lower the increase of D with PEF; (iv) at comparable open porosity, samples display a similar behavior for any rock composition. The method proposed here has the potential to become a standard routine to estimate eruptive energy of past and recent eruptions using values of D and open porosity, providing an important step towards volcanic hazard assessment.

Słowa kluczowe : experimental volcanology, rapid decompression experiment, fragment size distributions, fractals, eruptive energy,
Wydawnictwo : Instytut Geofizyki PAN
Rocznik : 2012
Numer : Vol. 60, no. 3
Strony : 682 – 698
Bibliografia : Alatorre-Ibargüengoitia, M.A., B. Scheu, and D.B. Dingwell (2011), Influence of the fragmentation process on the dynamics of Vulcanian eruptions: An experimental approach, Earth Planet. Sci. Lett. 302, 1-2, 51-59, DOI: 10.1016/j.epsl.2010.11.045.
Alidibirov, M., and D.B. Dingwell (1996), An experimental facility for the investigation of magma fragmentation by rapid decompression, Bull. Volcanol. 58, 5, 411-416, DOI: 10.1007/s004450050149.
Barnett, W. (2004), Subsidence breccias in kimberlite pipes – an application of fractal analysis, Lithos 76, 1-4, 299-316, DOI: 10.1016/j.lithos.2004.03.019.
Barton, C.C. (1995), Fractal analysis of scaling and spatial clustering of fractures. In: C.C. Barton, and P.R. La Pointe (eds.), Fractal in the Earth Sciences, Plenum Press, NY, 141-178.
Cas, R.A.F., and J.V. Wright (1987), Volcanic Successions, Modern and Ancient, Chapman & Hall, London.
Dellino, P., and G. Liotino (2002), The fractal and multifractal dimension of volcanic ash particles contour: a test study on the utility and volcanological relevance, J. Volcanol. Geotherm. Res. 113, 1-2, 1-18, DOI: 10.1016/S0377-0273(01)00247-5.
Dingwell, D.B. (1996), Volcanic dilemma – flow or blow? Science 273, 5278, 1054-1055, DOI: 10.1126/science.273.5278.1054.
Holtz, F., S. Lenne, G. Ventura, F. Vetere, and P. Wolf (2004), Non-linear deformation and break up of enclaves in a rhyolitic magma: A case study from Lipari Island (Southern Italy), Geophys. Res. Lett. 31, L24611, DOI: 10.1029/2004GL021590.
Korvin, G. (1992), Fractal Models in the Earth Sciences, Elsevier, Amsterdam.
Kueppers, U., B. Scheu, O. Spieler, and D.B. Dingwell (2006a), Fragmentation efficiency of explosive volcanic eruptions: A study of experimentally generated pyroclasts, J. Volcanol. Geotherm. Res. 153, 1-2, 125-135, DOI: 10.1016/j.jvolgeores.2005.08.006.
Kueppers, U., D. Perugini, and D.B. Dingwell (2006b), “Explosive energy” during volcanic eruptions from fractal analysis of pyroclasts, Earth Planet. Sci. Lett. 248, 3-4, 800-807, DOI: 10.1016/j.epsl.2006.06.033.
Mandelbrot, B.B. (1982), The Fractal Geometry of Nature, Freeman, San Francisco.
Maria, A., and S. Carey (2002), Using fractal analysis to quantitatively characterize the shapes of volcanic particles, J. Geophys. Res. 107, B11, 2283, DOI: 10.1029/2001JB000822.
Maria, A., and S. Carey (2007), Quantitative discrimination of magma fragmentation and pyroclastic transport processes using the fractal spectrum technique, J. Volcanol. Geotherm. Res. 161, 3, 234-246, DOI: 10.1016/j.jvolgeores.2006.12.006.
Matsushita, M. (1985), Fractal viewpoint of fracture and accretion, J. Phys. Soc. Japan 54, 857-860, DOI: 10.1143/JPSJ.54.857.
Pepe, S., G. Solaro, G.P. Ricciardi, and P. Tizzani (2008), On the fractal dimension of the fallout deposits: A case study of the 79 A.D. Plinian eruption at Mt. Vesuvius, J. Volcanol. Geotherm. Res. 177, 1, 288-299, DOI: 10.1016/j.jvolgeores.2008.01.023.
Perugini, D., and G. Poli (2005), Viscous fingering during replenishment of felsic magma chambers by continuous inputs of mafic magmas: Field evidence and fluid-mechanics experiments, Geology 33, 1, 5-8, DOI: 10.1130/G21075.1.
Perugini, D., M. Petrelli, and G. Poli (2006), Diffusive fractionation of trace elements by chaotic mixing of magmas, Earth Planet. Sci. Lett. 243, 3-4, 669-680, DOI: 10.1016/j.epsl.2006.01.026.
Perugini, D., L. Valentini, and G. Poli (2007), Insights into magma chamber processes from the analysis of size distribution of enclaves in lava flows: A case study from Vulcano Island (Southern Italy), J. Volcanol. Geotherm. Res. 166, 3-4, 193-203, DOI: 10.1016/j.jvolgeores.2007.07.017.
Perugini, D., A. Speziali, L. Caricchi, and U. Kueppers (2011), Application of fractal fragmentation theory to natural pyroclastic deposits: insights into volcanic explosivity of the Valentano scoria cone (Italy), J. Volcanol. Geotherm. Res. 202, 200-210, DOI: 10.1016/j.jvolgeores.2011.02.008.
Sammis, C.G., R.H. Osborne, J.L. Anderson, M. Banerdt, and P. White (1986), Selfsimilar cataclasis in the formation of fault gouge, Pure Appl. Geophys. 124, 1-2, 53-78, DOI: 10.1007/BF00875719.
Sornette, A., P. Davy, and D. Sornette (1990), Growth of fractal fault patterns, Phys. Rev. Lett. 65, 18, 2266-2269, DOI: 10.1103/PhysRevLett.65.2266.
Spieler, O., B. Kennedy, U. Kueppers, D.B. Dingwell, B. Scheu, and J. Taddeucci (2004), The fragmentation threshold of pyroclastic rocks, Earth Planet. Sci. Lett. 226, 1-2, 139-148, DOI: 10.1016/j.epsl.2004.07.016.
Storti, F., A. Billi, and F. Salvini (2003), Particle size distributions in natural carbonate fault rocks: insights for non-self-similar cataclasis, Earth Planet. Sci. Lett. 206, 1-2, 173-186, DOI: 10.1016/S0012-821X(02)01077-4.
Suzuki-Kamata, K., T. Kusano, and K. Yamasaki (2009), Fractal analysis of the fracture strength of lava dome material based on the grain size distribution of block-and-ash flow deposits at Unzen Volcano, Japan, Sedim. Geol. 220, 3-4, 162-168, DOI: 10.1016/j.sedgeo.2009.04.026.
Taddeucci, J., M. Pompilio, and P. Scarlato (2004), Conduit processes during the July-August 2001 explosive activity of Mt. Etna (Italy): inferences from glass chemistry and crystal size distribution of ash particles, J. Volcanol. Geotherm. Res. 137, 1-3, 33-54, DOI: 10.1016/j.jvolgeores.2004.05.011.
Turcotte, D.L. (1986), Fractals and fragmentation, J. Geophys. Res. 91, B2, 1921-1926, DOI: 10.1029/JB091iB02p01921.
Turcotte, D.L. (1992), Fractals and Chaos in Geology and Geophysics, Cambridge University Press, Cambridge.
Tyler, S.W., S.W. Wheatcraft (1992), Fractal scaling of soil particle-size distributions: analysis and limitations, Soil Sci. Soc. Am. J. 56, 2, 362-369.
Cytuj : Vallianatos, F. ,Tsallis, C. ,Sotolongo-Costa, O. ,Celikoglu, A. ,Abe, S. ,Bunde, A. ,Donner, R. ,Molchan, G. ,Lee, Y.-T. ,Tarraga, M. ,Perugini, D. , Fractal analysis of experimentally generated pyroclasts. A tool for volcanic hazard assessment. Acta Geophysica Vol. 60, no. 3/2012