Full waveform inversion of gas hydrate reflectors in Northern South China Sea

Czasopismo : Acta Geophysica
Tytuł artykułu : Full waveform inversion of gas hydrate reflectors in Northern South China Sea

Autorzy :
Yamasaki, K.
Department of Earth and Planetary Sciences, Faculty of Science, Kobe University, Nada, Kobe, Japan, yk2000@kobe-u.ac.jp,
Teisseyre, R.
Institute of Geophysics, Polish Academy of Sciences, Warszawa, Poland, rt@igf.edu.pl,
Herak, M.
University of Zagreb, Faculty of Science and Mathematics, Department of Geophysics, Zagreb, Croatia, herak@irb.hr,
Rosyidi, S. A. P.
Department of Civil Engineering, Muhammadiyah University of Yogyakarta, Yogyakarta, Indonesia, atmaja_sri@umy.ac.id,
Moustafa, S. S. R.
Department of Seismology, National Research Institute of Astronomy and Geophysics, Helwan, Cairo, Egypt, sri@umy.ac.id,
Tenzer, R.
School of Surveying, Faculty of Sciences, University of Otago, Dunedin, New Zealand, robert.tenzer@surveying.otago.ac.nz,
Rabeh, T.
National Research Institute of Astronomy and Geophysics, Cairo, Egypt; Center of Geophysics, Faculty of Science IGIDL, Lisbon University, Lisbon, Portugal, taharabeh@yahoo.com,
Węglarczyk, S.
Cracow University of Technology, Faculty of Environmental Engineering, Kraków, Poland, sweglar@pk.edu.pl,
Huo, Y.
China University of Geosciences, Beijing, China, hyuany@gmail.com,
Abstrakty : Bottom Simulating Reflectors (BSRs) are considered to be the bottom of gas hydrate bearing sediments; hence, BSRs are used to identify gas hydrate and free gas. In order to obtain accurate velocity structure of BSRs, this paper presents a full waveform inversion strategy based on Genetic Algorithm. Synthetic seismograms are calculated using the slowness technique. Through numerical experiments made with noisy synthetic data, the inversion algorithm shows stable performance, and genetic operators are defined. This method was applied to field data from the northern South China Sea. Inversion results show that obvious velocity anomaly of BSRs can be detected, which indicates the existence of gas hydrate and free gas.

Słowa kluczowe : gas hydrate, bottom simulating reflectors, genetic algorithm, full waveform inversion,
Wydawnictwo : Instytut Geofizyki PAN
Rocznik : 2009
Numer : Vol. 57, no. 3
Strony : 716 – 727
Bibliografia : Biot, M.A. (1956), Theory of propagation of elastic waves in a fluid-saturated porous solid. Part I: Low frequency range, J. Acoust. Soc. Am. 28, 168-178, DOI: 10.1121/1.1908239.
Cheng, W.B., C.S. Lee, C.S. Liu, P. Schnurle, S.S. Lin, and H.R. Tsai (2006), Velocity structure in marine sediments with gas hydrate reflectors in offshore SW Taiwan, from OBS data tomography, Terr. Atmos. Ocean. Sci. 17, 739-756.
Ecker, C., J. Dvorkin, and A.M. Nur (2000), Estimating the amount of gas hydrate and free gas from marine seismic data, Geophysics 65, 2, 565-573, DOI: 10.1190/1.1444752.
Geertsma, J. (1961), Velocity-log interpretation: The effect of rock bulk compressibility, Soc. Petrol. Eng. J. 1, 235-248, DOI: 10.2118/1535-G.
Hamilton, E.L. (1979), Vp/Vs and Poisson’s ratios in marine sediments and rocks, J. Acoust. Soc. Am. 66, 4, 1093-1101, DOI: 10.1121/1.383344.
Helgerud, M.B., J. Dvorkin, A. Nur, A. Sakai, and T. Collett (1999), Elastic-wave velocity in marine sediments with gas hydrates: Effective medium modeling, Geophys. Res. Lett. 26, 13, 2021-2024, DOI: 10.1029/1999GL900421.
Holbrook, W.S., H. Hoskins, W.T. Wood, R.A. Stephen, and D. Lizarralde (1996), Methane hydrate and free gas on the Blake Ridge from vertical seismic pro-filing, Science 273, 5283, 1840-1843, DOI: 10.1126/science.273.5283.1840.
Hyndman, R.D., and G.D. Spence (1992), A seismic study of methane hydrate ma¬rine bottom simulating reflectors, J. Geophys. Res. 97, B5, 6683-6698, DOI: 10.1029/92JB00234.
Jaiswal, P., C.A. Zelt, and I.A. Pecher (2006), Seismic characterization of a gas hy¬drate system in the Gulf of Mexico using wide-aperture data, Geophys. J. Int. 165, 1, 108-120, DOI: 10.1111/j.1365-246X.2006.02869.x.
Kennett, B.L.N., and N.J. Kerry (1979), Seismic waves in a stratified half space, Geophys. J. Int. 57, 557-583, DOI: 10.1111/j.1365-246X.1979.tb06779.x.
Lee, J.H., Y.S. Baek, B.J. Ryu, M. Riedel, and R.D. Hyndman (2005), A seismic survey to detect natural gas hydrate in the East Sea of Korea, Mar. Geo- phys. Res. 26, 51-59, DOI: 10.1007/s11001-005-6975-4.
Liu, W.G., Z.H. He, D.G. Huang, and Z.L. Du, (2007), Forward modeling by Fourier finite-difference approach, Oil Geophys. Pros. 6, 15-22.
MacKay, M.E., R.D. Jarrard, G.K. Westbrook, and R.D. Hyndman (1994), Origin of bottom-simulating reflectors: geophysical evidence from the Cascadia accretionary prism, Geology 22, 5, 459-462, DOI: 10.1130/0091-7613(1994) 022<0459:OOBSRG>2.3.CO;2.
Mellman, G.R. (1980), A method of body-wave waveform inversion for the determination of earth structure, Geophys. J. Int. 62, 481-504, DOI: 10.1111/ j.1365-246X.1980.tb02587.x.
Michalewicz, Z. (1996), Genetic Algorithms +Data Structures = Evolution Programs, 3rd ed., Springer Verlag, New York, 387 pp., DOI: 10.1016/S0167- 9473(97)87028-4.
Minshull, T.A., S.C. Singh, and G.K. Westbrook (1994), Seismic velocity structure at a gas hydrate reflector, offshore western Columbia, from full waveform inversion, J. Geophys. Res. 99, 4715-4734, DOI: 10.1029/93JB03282.
Netzeband, G.L., C.P. Hübscher, D. Gajewski, J.W.G. Grobys, and J. Bialas (2005), Seismic velocities from the Yaquina forearc basin off Peru: evidence for free gas within the gas hydrate stability zone, Int. J. Earth Sci. 94, 420-432, D0I:10.1007/s00531-005-0483-2.
Pecher, I.A., T.A. Minshull, S.C. Singh, and R.V. Huene (1996), Velocity structure of a bottom simulating reflector offshore Peru: Results from full waveform inversion, Earth Planet. Sci. Lett. 139, 459-469, D0I:10.1016/0012-821X (95)00242-5.
Pecher, I.A., C.R. Ranero, R. von Huene, T.A. Minshull, and S.C. Singh (1998), The nature and distribution of bottom simulating reflectors at the Costa Rican convergent margin, Geophys. J. Int. 133, 2, 219-229, DOI: 10.1046/j. 1365- 246X.1998.00472.x.
Rempel, A.W., and B.A. Buffett (1997), Formation and accumulation of gas hydrate in porous media, J. Geophys. Res. 102, 10151-10164, DOI: 10.1029/ 97JB00392.
Sambridge, M., and G. Drijkoningen (1992), Genetic algorithms in seismic waveform inversion, Geophys. J. Int. 109, 323-342, DOI: 10.1111/j.1365-246X. 1992.tb00100.x.
Sen, M.K., and P.L. Stoffa (1995), Global Optimization Methods in Geophysical Inversion, Elsevier, The Netherlands, 281 pp.
Shipley, T.H., M.H. Houston, R.T. Buffler, F.J. Shaub, K.J. McMillen, J.W. Ladd, and J.L. Worze (1979), Seismic evidence for widespread possible gas hydrate horizons on continental slopes and rises, Am. Assoc. Petr. Geol. Bull. 63, 2204-2213, DOI: 10.1306/2F91890A-16CE-11D7-8645000102C1865D.
Singh, S.C., T.A. Minshull, and G.D. Spence (1993), Velocity structure of gas hydrate reflector, Science 260, 204-207, DOI: 10.1126/science.260.5105.204.
Song, H.B., O. Matsubayashi, and S. Kuramoto (2003), Full waveform inversion of gas hydrate-related bottom simulating reflector, Chinese J. Geophys. 46, 1, 42-46.
Tatsuo, S., H. Masao, I. Takao, and T. Osamu (2005), Velocity structure of the Kumano basin in the Nankai trough, Proc. 4th Inter. Conference on Gas Hy-drates, Trondheim, Norway, 12-16 June 2005.
Trehu, A.M., P.E. Long, M.E. Torres, G. Bohrmann, F.R. Rack, T.S. Collett, S. Goldberg, A.V. Milkov, M. Riedel, P. Schultheiss, N.L. Bangs, S.R. Barr, W.S. Borowski, G.E. Claypool, M.E. Delwiche, G.R. Dickens, G. Gracia, G. Guerin, M. Holland, J.E. Johnson, Y.J. Lee, C.S. Liu, X. Su, B. Teichert, H. Tomaru, M. Vanneste, M. Watanabe, and J.L. Weinberger (2004), Three-dimensional distribution of gas hydrate beneath southern Hydrate Ridge: constraints from ODP Leg 204, Earth Planet. Sci. Lett. 222, 845-862, DOI: 10.1016/j.epsl.2004.03.035.
Yuan, T., G.D. Spence, R.D. Hyndman, T.A. Minshull, and S.C. Singh (1999), Seismic velocity studies of a gas hydrate bottom-simulating reflector on the northern Cascadia continental margin: Amplitude modeling and full wave-form inversion, J. Geophys. Res. 104, 1179-1191, DOI: 10.1029/1998J B900020.
Zhang, F.C., X.Y. Yin, and J. Zhao (2003), Full wave field modeling by slowness method and realization of horizontal slowness integration, Oil Geophys. Prosp. 6, 597-602.
Zhang, J.H., W.M. Wang, L.F. Zhao, and Z.X. Yao (2007), Modeling 3-D scalar waves using the Fourier finite-difference method, Chinese J. Geophys. 6, 29-37.
Zheng, H.S., I.B. Morozov, and Z.J. Zhang (2007), Numerical analysis of one-dimensional nonlinear acoustic wave, Acta Geophys. 55, 3, 313-323, DOI: 10.2478/s11600-007-0012-8.
Zillmer, M., E.R. Flueh, and J. Petersen (2005), Seismic investigation of a bottom simulating reflector and quantification of gas hydrate in the Black Sea, Geophys. J. Int. 161, 662-678, DOI: 10.1111/j.1365-246X.2005.02635.x.
Cytuj : Yamasaki, K. ,Teisseyre, R. ,Herak, M. ,Rosyidi, S. A. P. ,Moustafa, S. S. R. ,Tenzer, R. ,Rabeh, T. ,Węglarczyk, S. ,Huo, Y. , Full waveform inversion of gas hydrate reflectors in Northern South China Sea. Acta Geophysica Vol. 57, no. 3/2009