Journal : Acta Geophysica
Article : Generalized migration in frequency-wavenumber domain (MGF-K) in anisotropic media

Authors :
Nowożyński, K.
Institute of Geophysics, Polish Academy of Sciences, Warszawa, Poland, kn@igf.edu.pl,
Ślęzak, K.
Institute of Geophysics, Polish Academy of Sciences, Warszawa, Poland, katarzyna.slezak@igf.edu.pl,
Kądziałko-Hofmokl, M.
Institute of Geophysics, Polish Academy of Sciences, Warszawa, Poland, magdahof@igf.edu.pl,
Szczepański, J.
Institute of Geological Sciences, University of Wrocław, Wrocław, Poland, jacek.szczepanski@ing.uni.wroc.pl,
Werner, T.
Institute of Geophysics, Polish Academy of Sciences, Warszawa, Poland, twerner@igf.edu.pl,
Jeleńska, M.
Institute of Geophysics, Polish Academy of Sciences, Warszawa, Poland, bogna@igf.edu.p,
Nejbert, K.
Institute of Geochemistry, Mineralogy and Petrology, Warsaw University, Warszawa, Poland, knejbert@uw.edu.pl,
Shireesha, M.
National Geophysical Research Institute, Council of Scientific and Industrial Research, Hyderabad, India, shireeshageo.m@gmail.com,
Harinarayana, T.
National Geophysical Research Institute, Council of Scientific and Industrial Research, Hyderabad, India, thari54@yahoo.com,
Romashkova, L.
Institute of Earthquake Prediction Theory and Mathematical Geophysics, Russian Academy of Sciences, Moscow, Russia, lina@mitp.ru,
Peresan, A.
The Abdus Salam International Centre for Theoretical Physics, SAND Group, Trieste, Italy,
Arosio, D.
Department of Structural Engineering, Politecnico di Milano, Milan, Italy, diego.arosio@polimi.it,
Longoni, L.
Department of Environmental, Hydraulic, Infrastructures and Surveying Engineering, Politecnico di Milano, Milan, Italy, laura.longoni@polimi.it,
Papini, M.
Department of Environmental, Hydraulic, Infrastructures and Surveying Engineering, Politecnico di Milano, Milan, Italy, monica.papini@polimi.it,
Zanzi, L.
Department of Structural Engineering, Politecnico di Milano, Milan, Italy, luigi.zanzi@polimi.it,
Kostecki, A.
Oil and Gas Institute, Kraków, Poland, kostecki@inig.pl,
Półchłopek, A.
Oil and Gas Institute, Kraków, Poland, polchlopek@inig.pl,
Abstract : In this paper, the background of MGF-K migration in dual domain (wavenumber-frequency K-F and space-time) in anisotropic media is presented. Algorithms for poststack (zero-offset) and prestack migration are based on downward extrapolation of acoustic wavefield by shift-phase with correction filter for lateral variability of medium’s parameters. In anisotropic media, the vertical wavenumber was determined from full elastic wavefield equations for two dimensional (2D) tilted transverse isotropy (TTI) model. The method was tested on a synthetic wavefield for TTI anticlinal model (zero-offset section) and on strongly inhomogeneous vertical transverse isotropy (VTI) Marmousi model. In both cases, the proper imaging of assumed media was obtained.

Keywords : anisotropic migration, tilted transverse isotropy (TTI), vertical transverse isotropy (VTI), transverse isotropy (TI), full elastic equation,
Publishing house : Instytut Geofizyki PAN
Publication date : 2013
Number : Vol. 61, no. 3
Page : 624 – 637

Bibliography
: Alkhalifah, T. (1998), Acoustic approximations for processing in transversely isotropic media, Geophysics 63, 2, 623-631, DOI: 10.1190/1.1444361.
Alkhalifah, T. (2000), An acoustic wave equation for anisotropic media, Geophysics 65, 4, 1239-1250, DOI: 10.1190/1.1444815.
Anderson, D.L. (1961), Elastic wave propagation in layered anisotropic media, J. Geophys. Res. 66, 9, 2953-2963, DOI: 10.1029/JZ066i009p02953.
Bakker, P.M. (2009), A stable one-way wave propagator for VTI media, Geophysics 74, 5, WB3-WB17, DOI: 10.1190/1.3196818.
Bale, R. (2007), Phase shift migration and the anisotropic acoustic wave equation. In: Proc. 69th Conf. EAGE, Incorporating SPE EUROPEC, London, Extend. Abstr. C021.
Banik, N.C. (1984), Velocity of anisotropy of shales and depth estimation in the North Sea basin, Geophysics 49, 9, 1411-1419, DOI: 10.1190/1.1441770.
Gazdag, J. (1978), Wave equation migration with the phase-shift method, Geophysics 43, 7, 1342-1351, DOI: 10.1190/1.1440899.
Han, Q., and R.S. Wu (2005), A one-way dual-domain propagator for scalar qPwaves in VTI media, Geophysics 70, 2, D9-D17, DOI: 10.1190/1.1884826.
Hildebrand, F.B. (1956), Introduction to Numerical Analysis, McGraw-Hill Inc., New York.
Isaac, J.H., and D.C. Lawton (1999), Image mispositioning due to dipping TI media; A physical seismic modeling study, Geophysics 64, 4, 1230-1238.
Kitchenside, P.W. (1991), Phase shift-based migration for transverse isotropy. In: Proc. 61st SEG Annual Meeting, 10-14 November 1991, Houston, USA, Expand. Abstr. 993-998.
Kostecki, A. (1994), Algorithm of prestack migration. In: Proc. First Science-Tech. Conf. “The Seismic Problems of the Interpretation”, 26-28 October 1994, Mogilany/Cracow, Poland (in Polish).
Kostecki, A. (2011), Tilted transverse isotropy, Nafta-Gaz 67, 11, 769-776.
Kostecki, A., and A. Półchłopek (1998), Stable depth extrapolation of seismic wavefields by a Neumann series, Geophysics 63, 6, 2063-2071, DOI:10.1190/1.1444499.
Kostecki, A., and A. Półchłopek (2003), Prestack depth migration using converted waves, Acta Geophys. Pol. 51, 1, 73-84.
Le Rousseau, J.H., and M.V. de Hoop (2001), Scalar generalized-screen algorithms in transversely isotropic media with a vertical symmetry axis, Geophysics 66, 5, 1538-1550, DOI: 10.1190/1.1487100.
Loewenthal, D., L. Lu, R. Robertson, and J. Sherwood (1976), The wave equation applied to migration, Geophys. Prospect. 24, 2, 380-399, DOI: 10.1111/j.1365-2478.1976.tb00934.x.
Ristow, D., and T. Rühl (1994), Fourier finite-difference migration, Geophysics 59, 12, 1882-1893, DOI: 10.1190/1.1443575.
Thomsen, L. (1986), Weak elastic anisotropy, Geophysics 51, 10, 1954-1966, DOI:10.1190/1.1442051.
DOI :
Qute : Nowożyński, K. ,Ślęzak, K. ,Kądziałko-Hofmokl, M. ,Szczepański, J. ,Werner, T. ,Jeleńska, M. ,Nejbert, K. ,Shireesha, M. ,Harinarayana, T. ,Romashkova, L. ,Peresan, A. ,Arosio, D. ,Longoni, L. ,Papini, M. ,Zanzi, L. ,Kostecki, A. ,Półchłopek, A. ,Półchłopek, A. , Generalized migration in frequency-wavenumber domain (MGF-K) in anisotropic media. Acta Geophysica Vol. 61, no. 3/2013
facebook