Geochemistry and age of groundwater in a hydrochemically diversified aquifer (Permo-Carboniferous, the Intra-Sudetic Synclinorium, SWPoland) derived from geochemical modelling and isotopic studies

Czasopismo : Acta Geologica Polonica
Tytuł artykułu : Geochemistry and age of groundwater in a hydrochemically diversified aquifer (Permo-Carboniferous, the Intra-Sudetic Synclinorium, SWPoland) derived from geochemical modelling and isotopic studies

Autorzy :
Fedorowski, J.
Institute of Geology, Adam Mickiewicz University, Maków Polnych 16, PL-61-606 Poznań, Poland,,
Łuczyński, P.
Institute of Geology, Warsaw University, Al. Żwirki i Wigury 93, PL-02-089 Warszawa, Poland,,
Kaufmann, B.
Osterreichische Akademie der Wissenschaften, Kommission fur die palaontologische und stratigraphische Erforschung Osterreichs (KPSOE), c/o Institut fur Erdwissenschaften, Karl-Franzens-Universitat Graz, Heinrichstrasse 26, A-8010 Graz, Austria,,
Apolinarska, K.
Institute of Geology, Adam Mickiewicz University, Maków Polnych 16, PL-61-606 Poznań, Poland,,
Dobrzyński, D.
Institute of Hydrogeology and Engineering Geology, Faculty of Geology, University of Warsaw, Żwirki i Wigury 93, PL-02-089 Warsaw, Poland,,
Abstrakty : Comprehensive investigations of groundwater were performed in a sedimentary aquifer of Permo-Carboniferous, Intra-Sudetic Synclinorium, in SWPoland. The investigation included aqueous chemical and isotopic composition, chemistry of mineral phases, geochemical modelling, and tritium and radiocarbon groundwater dating. Chemical diversity in the groundwater system is created by the mixing of modern fresh water and older sulphate water with higher dissolved solids. The system is treated as a system of flows of two end-member water types. Geochemical modelling is used for: (1) explaining the origin of the chemistry of both water components, (2) quantifying the groundwater mixing, (3) correcting the radiocarbon age of the groundwater for the effects of chemical water-rock interactions, and (4) calculating reaction rates. Study of stable (C, S, O, H) and unstable ([^3H], [^14]C) isotopes allowed the inverse mass balance geochemical models to be verified and specified, and the groundwater to be dated. The chemistry of the modern, tritium-bearing, fresh water is a result of dissolution of limestones, dolomites and gypsum. The mean tritium-age of this water, based on the lumped-parameter approach, varies between 10 and 200 years. The sulphate mineral water owes its chemistry to the process of dedolomitization driven by gypsum dissolution. Its radiocarbon age is about 5.9 ka BP, i.e., during theMid-Holocene Climatic Optimum. Rates of chemical reactions responsible for the formation of sulphate type water are estimated to be: dissolution of gypsum (2.85 [mi]mol/L/year) and dolomite (0.21 [mi]mol/L/year), calcite precipitation (0.20 [mi]mol/L/year), organic matter decomposition (0.08 [mi]mol/L/year).

Słowa kluczowe : dedolomityzacja, izotopy trwale, modelowanie geochemiczne, skład chemiczny wód podziemnych, szybkość reakcji, tryt, węgiel promieniotwórczy, Dedolomitization, Geochemical modelling, Groundwater dating, Groundwater geochemistry, Groundwater mixing, Radiocarbon, Reaction rates, Stable isotopes, Sudetes, Tritium,
Wydawnictwo : Faculty of Geology of the University of Warsaw
Rocznik : 2009
Numer : Vol. 59, no. 3
Strony : 371 – 411
Bibliografia : Awdankiewicz, M. 1999a. Volcanism in a late Variscan intramontagne trough: Carboniferous and Permian volcanic centres of the Intra-Sudetic Basin, SW Poland. Geologia Sudetica, 32, 13–47.
Awdankiewicz, M. 1999b. Volcanism in a late Variscan intramontagne trough: the petrology and geochemistry of the Carboniferous and Permian volcanic rocks of the Intra-Sudetic Basin, SW Poland. Geologia Sudetica, 32, 83–111.
Awdankiewicz, M. 2004. Sedimentation, volcanism and subvolcanic intrusions in a late Palaeozoic intramontane through (the Intra-Sudetic Basin, SW Poland). In: C. Breitkreuz and N. Petford (Eds), Physical geology of highlevel magmatic systems, Geological Society, London, Special Publication, 234, 5–11.
Back,W., Hanshaw, B.B., Plummer, L.N., Rahn, P.H., Rightmire, C.T. and Rubin, M. 1983. Process and rate of dedolomitization: mass transfer and 14C dating in a regional carbonate aquifer. Geological Society of America Bulletin, 94, 1414–1429.
Bard, E.,Arnold, M., Fairbanks, R.G. and Hamelin, B. 1993. 230Th-234Uand 14C dates obtained bymass spectrometry on corals. Radiocarbon, 35, 191–199.
Bischoff, J.L., Julia, R., Shanks III,W.C. and Rosenbauer, R.J. 1994. Karstification without carbonic acid: Bedrock dissolution by gypsum-driven dedolomitization.Geology, 22, 995–998.
Bossowski,A. (Ed.) 1996. Grzędy IG1. Profiles of deep boreholes. Polish Geological Institute, 83, 1–57. In Polish
Bossowski, A. (Ed.) 1997. Unisław Śląski IG1. Profiles of deep boreholes. Polish Geological Institute, 88, 1–64. In Polish
Bossowski, A., Cymerman, Z., Grocholski, A. and Ihnatowicz, A. 1994. Geological Map of the Sudetes, 1:25 000, sheet Jedlina Zdroj. Polish Geological Institute, Warsaw.
Bossowski, A. and Ihnatowicz, A. 1994. Paleogeography of the uppermost Carboniferous and lowermost Permian deposits in the Intra-Sudetic Depression. Geological Quarterly, 38, 709–726.
Bottcher, M.E., Smock, A.M. and Cypionka, H. 1998. Sulfur isotope fractionation during experimental precipitation of iron(II) and manganese(II) sulfide at room temperature. Chemical Geology, 146, 127–134.
Braddock, W.A. and Bowles, C.G. 1963. Calcitization of dolomite by calcium sulfate solutions in the Minnelusa Formation, Black Hills, South Dakota and Wyoming. U.S. Geological Survey, Professional Paper, 475-C, 96–99.
Brook, G.A., Folkoff, M.E. and Box, E.O. 1983. A world model of soil carbon dioxide. Earth Surface Processes, 8, 79–88.
Busby, J.F., Plummer, L.N., Lee, R.W. and Hanshaw, B.B. 1991. Geochemical evolution of water in the Madison aquifer in parts of Montana, South Dakota, and Wyoming. U.S. Geological Survey, Professional Paper, 1273-F, 1–89.
Busenberg, E. and Plummer, L.N. 1989. Thermodynamics of magnesium calcite solid-solution at 25˚C and 1 atm total pressure. Geochimica et Cosmochimica Acta, 53, 1189–1208.
Ciężkowski, W. 1990. A study on the hydrogeochemistry of mineral and thermal waters in the Polish Sudety Mountains (SW Poland). Technical University of Wrocław. Prace Naukowe Instytutu Geotechniki, 60, pp. 1–133. In Polish, English summary
Ciężkowski, W., Grabczak, J. and Zuber, A. 1985. Origin of thermal waters in Cieplice Zdrój, and their exploitation in the light of isotopic studies. In: Modern problems of hydrogeology, AGH, Krakow, pp. 225–231. In Polish, English summary
Ciężkowski, W., Groning, M., Leśniak, P.M.,Weise, S.M. and Zuber, A. 1992. Origin and age of thermal waters in Cieplice Spa, Sudeten, Poland, inferred from isotope chemical and noble gas data. Journal of Hydrology, 140, 89–117.
Ciężkowski, W. and Kryza, J. 1989. Deuterium and oxygen-18 in the Sudetes shallow groundwater. Technical University of Wrocław. Prace Naukowe Instytutu Geotechniki, 58, 183–187. In Polish
Ciężkowski, W. and Kryza, J. 1997.Oxygen and hydrogen isotopic composition in fresh groundwater of the Sudetes Mts. Acta Universitatis Wratislaviensis, 2052, 157–159.
Ciężkowski, W. and Szarszewska, Z. 1978. About the mixing of therapeutic waters with enveloped waters – examples from spas in the Sudetes. Problemy Uzdrowiskowe, 6, 167–173. In Polish
Ciężkowski, W. and Zuber, A. 1996. Uncertainties in determination of tritium ages demonstrated for therapeutical waters of the Sudetes. In: Hydrogeological problems of the SW Poland. Wrocław, pp. 255–262. In Polish
Clark, I.D. and Fritz, P. 1997. Environmental isotopes in hydrogeology, pp. 1–328. CRC Press; Boca Raton, Florida, USA.
Claypool, G.E., Holser,W.T., Kaplan, I.R., Sakai, H. and Zak, I. 1980. The age curves of sulfur and oxygen isotopes in marine sulfate and their mutual interpretation. Chemical Geology, 28, 199–260.
Coplen, T.B. 1996. New guidelines for reporting stable hydrogen, carbon and oxygen isotope-ratio data. Geochimica et Cosmochimica Acta, 60, 3359–3360.
Cortecci, G., Reyes, E., Berti, G. and Casati, P. 1981. Sulfur and oxygen isotopes in Italian marine sulfates of Permian and Triassic ages. Chemical Geology, 34, 65–79.
Craig, H. 1961. Isotopic variations inmeteoricwaters. Science, 133, 1702-1703.
d’Obyrn, K., Grabczak, J. and Zuber, A. 1997. Maps of isotopic composition of the holocene meteoric waters in Poland. In: J. Gorski and E. Liszkowska (Eds), Modern problems of hydrogeology, Adam Mickiewicz University, Poznań, 8, 331–333. In Polish, English summary
Dąbrowski, S. and Szafranek, M. 1982. Hydrogeological documentation of groundwater intake at Upper Crateceous, Triassic, and Permian deposits. Unpublished. Przedsiębiorstwo Geologiczne, Wrocław. In Polish
Dobrzyński, D. 1997.Aluminium hydrogeochemistry in areas affected by acid rains in the Intra-Sudetic Depression, SW Poland. pp. 1–149. Unpublished. Ph.D. thesis, Institute of Hydrogeology and Engineering Geology, University of Warsaw. In Polish
Dobrzyński, D. 2005. Conceptual geochemical models of groundwater chemistry against aquifer mineralogy (Stefanian-Autunian sedimentary rocks, the Intra-Sudetic Basin, SW Poland). Slovak Geological Magazine, 11, 219–224.
Dobrzyński, D. 2007a. Chemical diversity of groundwater in the Carboniferous-Permian aquifer in the Unisław Śląski – Sokołowsko area (the Sudetes, Poland); a geochemical modelling approach. ActaGeologica Polonica, 57, 97–112.
Dobrzyński, D. 2007b. Chemistry of groundwater in the fissured sedimentary aquifer (Carboniferous-Permian, the Intra-Sudetic Basin, SW Poland): a result of individual flow systems. Acta Universitatis Wratislaviensis, 3041, 81–91.
Dobrzyński, D. 2008. Estimation of inorganic carbon sources in groundwater recharge by inverse geochemical modelling (Carboniferous aquifer, the Intra-Sudetic Basin, SW Poland). Geological Quarterly, 52, 191–196.
Dowgiałło, J., Florkowski, T. and Grabczak, J. 1974. Tritium and 14C dating of Sudetic thermal waters. Biuletyn PAN, Seria Nauk o Ziemi, 12, 101–109.
Duliński, M., Florkowski, T., Grabczak, J. and Rożański, K. 2001. 25 lat systematycznych pomiarów składu izotopowego opadów na terenie Polski. Przegląd Geologiczny, 49, 250–256. In Polish, English summary
Duliński, M., Kapusta, M., Karpińska-Rzepa, A., Różański, K. and Witczak, S. 2007. Evolution of carbon isotope composition (13C/12C, 14C/12C) of dissolved carbonates in unsaturated zone. In: Modern problems of hydrogeology, AGH, Krakow, 13, 65–74. In Polish, English summary
Dziedzic, K. and Teisseyre, A.K. 1990: The Hercynian molasse and younger deposits in the Intra-Sudetic Depression, SW Poland. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, 179, 285–305.
Edmunds, W.M., Bath, A.H., and Miles, D.L. 1982. Hydrochemical evolution of the East Midlands Triassic sandstone aquifer, England. Geochimica et Cosmochimica Acta, 46, 2069–2081.
Gallagher, D., McGee, E.J., Kalin, R.M. and Mitchell, P.I. 2000. Performance of models for radiocarbon dating of groundwater: An appraisal using selected Irish aquifers. Radiocarbon, 42, 235–248.
Ganopolski, A., Kubatzki, C., Claussen, M., Brovkin, V. and Petoukhov, V. 1998. The Influence of Vegetation-Atmosphere-Ocean Interaction on Climate During the Mid-Holocene. Science, 280, 1916–1919.
Geyh, M.A. 2000.An overview of 14C analysis in the study of groundwater. Radiocarbon, 42, 99–114.
Górka, M., Jędrysek, M.O. and Strąpoć, D. 2008. Isotopic composition of sulphates from meteoric precipitation as an indicator of pollutant origin in Wrocław (SW Poland). Isotopes in Environmental and Health Studies, 44, 177–188.
Grabczak, J., Małoszewski, P., Różański, K., and Zuber, A. 1984. Estimation of the tritiuminput function with the aid of stable isotopes. Catena, 11, 105–114.
Grocholski, A. 1971. Geological Map of the Sudetes, 1:25 000, sheet Mieroszów. Polish Geological Institute,Warsaw.
Hanshaw, B.B. and Back, W. 1979. Major geochemical processes in the evolution of carbonate-aquifer systems. Journal of Hydrology, 43, 287–312.
Hewitt, C.D. and Mitchell, J.F.B. 1998. A fully coupled GCM simulation of the climate of the Mid-Holocene. Geophysical Research Letters, 25, 361–364.
Hidalgo, M.C. and Cruz-Sanjulian, J. 2001.Groundwater composition, hydrochemical evolution and mass transfer in a regional detrital aquifer (Baza basin, southern Spain). Applied Geochemistry, 16, 745–758.
Hoefs, J. 1997. Stable isotope geochemistry, pp. 1–201. Springer; Berlin.
Hua, Q. and Barbetti, M. 2004. Review of tropospheric bomb 14C data for carbon cycle modeling and age calibration purposes. Radiocarbon, 46, 1273–1298.
IAEA, 2002. Statistical treatment of data on environmental isotopes in precipitation (period 1960-1997). International Atomic Energy Agency, Vienna, pp. 1–37.
Jędrysek, M.O. 2000. Oxygen and sulphur isotope dynamics in the SO42− of an urban precipitation. Water, Air, and Soil Pollution, 117, 15–25.
Jędrysek, M.O. 2003. New data on δ34S(SO42−) and δ18O(SO42) values in precipitation: potential indicator of the origin of surficial and groundwater recharge). In: H. Piekarek-Jankowska and B. Jaworska-Szulc (Eds), Recent problems of hydrogeology. Gdańsk University of Technology, Gdańsk, 11, 157–164. In Polish, English summary
Jimenez-Lopez, C., Caballero, E., Huertas, F.J. and Romanek, C.S. 2001. Chemical, mineralogical and isotopic behavior and phase transformation during the precipitation of calcium carbonate minerals from intermediate ionic solution at 25˚C. Geochimica et Cosmochimica Acta, 65, 3219–3231.
Jimenez-Lopez, C., Romanek, C.S. and Caballero, E. 2006. Carbon isotope fractionation in synthetic magnesian calcite. Geochimica et Cosmochimica Acta, 70, 1163–1171.
Kalin, R.M. 2000. Radiocarbon dating of groundwater systems. In: P.G. Cook and A.L. Herczeg (Eds), Environmental tracers in subsurface hydrology, pp. 111–144. Kluwer; Boston, USA.
Kania, J., Karlikowska, J., Szczepańska, J., Witczak, S., Duliński, M., Różański, K., Jackowicz-Korczyński, M. and Zuber, A. 2003. Bogucice sands: stratification and flow models. In: H. Piekarek-Jankowska and B. Jaworska-Szulc (Eds), Modern problems of hydrogeology, Gdańsk University of Technology, Gdańsk, 11 (1), 335–342. In Polish, English summary
Kania, J., Witczak, S., Duliński, M., Kapusta, M., Różański, K., Jackowicz-Korczyński, M., Śliwka, I. and Zuber, A. 2005. Calibration and validation of flow and migration models, and corrections of the conceptual model of the Bogucice sands aquifer with the aid of tracers. In: A. Sadurski and A. Krawiec (Eds), Modern problems of hydrogeology, Nicolaus Copernicus University, Toruń, 12, 317–322. In Polish, English summary
Kowalski, S. 1992. Natural factors conditioning occurrence of groundwater in the sudetic region. Prace Geologiczno-Mineralogiczne, 25, pp. 1–67. In Polish, English summary
Kozłowski, J. 1999.Water mixing – the main process forming chemical composition of therapeutic waters in Poland. pp. 1–135. Unpublished. Ph.D. thesis, Faculty of Mining, Wrocław University of Technology. In Polish
Krouse, H.R. and Mayer, B. 2000. Sulphur and oxygen isotopes in sulphate. In: P.G. Cook and A.L. Herczeg (Eds), Environmental tracers in subsurface hydrology, pp. 195–231. Kluwer; Boston, USA.
Kuechler, R., Noack, K. and Zorn, T. 2004. Investigation of gypsumdissolution under saturated and unsaturatedwater conditions. Ecological Modelling, 176, 1–14.
Landmeyer, J.E. and Stone, P.A. 1995. Radiocarbon and δ13C values related to ground-water recharge and mixing. Ground Water, 33, 227–234.
Lawrence, A.R., Lloyd, J.W. and Marsh, J.M. 1976. Hydrochemistry and groundwater mixing in part of the Lincolnshire Limestone aquifer, England. GroundWater, 14, 320–327.
Leśniak, P.M. 1980. The origin of chloride waters at Wysowa, West Carpathians. Chemical and isotopic approach. Acta Geologica Polonica, 30, 519–550.
Leśniak, P.M. and Zawidzki, P. 2006. Determination of carbon fractionation factor between aqueous carbonate and CO2(g) in two-direction isotope equilibration. Chemical Geology, 231, 203–213.
Levin, I. and Kromer, B. 2004. The tropospheric 14CO2 level inmid-latitudes of the Northern Hemisphere (1959-2003). Radiocarbon, 46, 1261–1272.
Liu, S.T. and Nancollas, G.H. 1971. The kinetics of dissolution of calciumsulfate dihydrate. Journal of Inorganic and Nuclear Chemistry, 33, 2311–2316.
Liu, Z.,Yuan, D. and Dreybrodt,W. 2005. Comparative study of dissolution rate-determining mechanisms of limestone and dolomite. Environmental Geology, 49, 274–279.
Malinowski, J. (Ed.) 1991. Geology of Poland, vol. 7 – Hydrogeology. Wydawnictwa Geologiczne, Warsaw, Poland. pp. 1–275. In Polish
Małoszewski, P. and Zuber, A. 1982. Determining the turnover time of groundwater systems with the aid of environmental tracers, I. Models and their applicability. Journal of Hydrology, 57, 207–231.
Małoszewski, P. and Zuber, A. 1985. On the theory of tracer experiments in fissured rocks with a porous matrix. Journal of Hydrology, 79, 333–358.
Małoszewski, P. and Zuber, A. 1991. Influence of matrix diffusion and exchange reactions on radiocarbon ages in fissured carbonate aquifers. Water Resources Research, 27, 1937–1945.
Małoszewski, P. and Zuber,A. 1996. Lumped parameter models for the interpretation of environmental tracer data. In: Manual on mathematical models in isotope hydrology. IAEA-TECDOC-910. IAEA, Vienna, 9–58.
Małoszewski, P. and Zuber, A. 2002. Manual on lumped parameter models used for the interpretation of environmental tracer data in groundwaters. In:Use of Isotopes for Analyses of Flow and Transport Dynamics in Groundwater Systems. IAEA-UIAGS, IAEA, Vienna.
Mastalerz, K. and Nehyba, S. 1997. Comparison of Rothliegende lacustrine depositional sequences from Intrasudetic, North-Sudetic and Boskovice basins (Central Europe).Geologia Sudetica, 30, 21–57. In Polish, English summary
Mazor, E. 1992. Interpretation of water-rock interactions in cases of mixing. In: Y.K. Kharaka and A.E. Maest (Eds), Water-Rock Interaction, pp. 233–236. Balkema; Rotterdam.
Mazor, E., Jaffe, F.C., Fluck, J. and Dubois, J.D. 1986. Tritium corrected 14C and atmospheric noble gas corrected 4He applied to deduce ages of mixed groundwaters: Examples from the Baden region, Switzerland. Geochimica et Cosmochimica Acta, 50, 1611–1618.
Mook, W.G., Bommerson, J.C. and Staverman, W.H. 1974. Carbon isotope fractionation between dissolved bicarbonate and gaseous carbon dioxide. Earth and Planetary Science Letters, 22, 169–176.
Morse, J.W. and Mackenzie, F.T. 1990. Geochemistry of sedimentary carbonates. Developments in Sedimentology, 48, 1–707.
Münnich, K.O. 1957. Messung des 14C-Gehaltes von hartem Grundwasser. Naturwissenschaften, 44, 32–33.
Nemec,W., Porębski, S.J. and Teisseyre, A.K. 1982. Exploratory notes to the lithotectonic molasse profile of the Intra-Sudetic Basin, Polish part (Sudety Mts, Carboniferous-Permian). Veröffentlichungen Zentralinstituts für Physik der Erde, Akad. der Wissenschaften der DDR, 66, 267–278.
Nordstrom, D.K. 1977. Thermochemical redox equilibria of ZoBell’s solution. Geochimica et Cosmochimica Acta, 41, 1835–1841.
Paczyński, B. and Sadurski, A. (Eds) 2007. Regi onal hydrogeology of Poland, vol. 1 – Fresh waters. Polish Geological Institute;Warsaw, pp. 1–542. In Polish
Parkhurst, D.L. and Appelo, C.A.J. 1999. User’s guide to PHREEQC (version 2) – A computer model for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. U.S. Geological Survey, WRI Report, 99-4259, 1–326.
Parkhurst, D.L. and Plummer, L.N. 1993. Geochemical models. In: A. William (Ed.), Regional ground-water quality, pp. 199–225. Van Nostrand Reinhold; New York, USA.
Parkhurst, D.L., Plummer, L.N. and Thorstenson, D.C. 1982. BALANCE – a computer program for calculating mass transfer for geochemical reactions in ground water. U.S. Geological Survey, WRI Report, 82-14.
Parkhurst, D.L., Thorstenson, D.C. and Plummer, L.N. 1980. PHREEQE – a computer programfor geochemical calculations. U.S. Geological Survey, WRI Report, 80-96, pp. 1–195.
Pearson, G.W., Pilcher, J.R., Baillie, M.G.L., Corbett, D.M. and Qua, F. 1986. High-precision 14C measurement in Irish oaks to show the natural 14C variations from AD 1840 to 5210 BC. Radiocarbon, 28, 911–934.
Pearson, F.J. and Rightmire, C.T. 1980. Sulphur and oxygen isotopes in aqueous sulphur compounds. In: P. Fritz and J.C. Fontes (Eds), Handbook of Environmental Isotope Geochemistry, The Terrestrial Environment, pp. 227–258. Elsevier; New York, USA.
Plummer, L.N. 1977. Defining reactions and mass transfer in part of the Floridan aquifer. Water Resources Research, 13, 801–812.
Plummer, L.N. 1985. Geochemical modeling: a comparison of forward and inverse methods. In: B. Hitchon and E.I. Wallick (Eds), 1st Canadian/American Conference on Hydrogeology. Practical applications of ground water geochemistry. Banff, Alberta, Canada, Worthington, OH, National Water Well Association, 149–177.
Plummer, L.N. and Back, W. 1980. The mass balance approach: Application to interpreting the chemical evolution of hydrologic systems. American Journal of Science, 280, 130–142.
Plummer, L.N., Busby, J.F., Lee, R.W. and Hanshaw, B.B. 1990. Geochemical modeling of the Madison aquifer in parts of Montana,Wyoming, and South Dakota.Water Resources Research, 26, 1981–2014.
Plummer, L.N., Parkhurst, D.L., and Thorstenson, P.C. 1983. Development of reaction models for groundwater systems. Geochimica et Cosmochimica Acta, 47, 655–686.
Plummer, L.N., Prestemon, E.C. and Parkhurst, D.L. 1991. An interactive code (NETPATH) for modeling net geochemical reactions along a flow path. U.S. Geological Survey, WRI Report, 91-4078, 1–227.
Plummer, N. and Sprinkle, C.L. 2001. Radiocarbon dating of dissolved inorganic carbon in groundwater from confined parts of the Upper Floridan aquifer, Florida, USA. Hydrogeology Journal, 9, 127–150.
Poprawski, L. 1996. Water management balance of groundwater in the Ścinawka River catchment. Unpublished. Archive of RZGW,Wrocław, pp. 1–105. In Polish
Price, F.T. and Shieh, Y.N. 1979. Fractionation of sulfur isotopes during laboratory synthesis of pyrite at low temperatures. Chemical Geology, 27, 245–253.
Reimer, P.J., Baillie, M.G.L., Bard, E., Bayliss, A., Beck, J.W., Bertrand, C.J.H., Blackwell, P.G., Buck, C.E., Burr, G.S., Cutler, K.B., Damon, P.E., Edwards, R.L., Fairbanks, R.G., Friedrich, M.,Guilderson, T.P., Hogg, A.G., Hughen, K.A., Kromer, B., McCormac, G., Manning, S., Ramsey, C.B., Reimer, R.W., Remmele, S., Southon, J.R., Stuiver, M., Talamo, S., Taylor, F.W., Van der Plicht, J. and Weyhenmeyer, C.E. 2004. INTCAL04 Terrestrial radiocarbon age calibration, 0-26 CAL kyr BP. Radiocarbon, 46, 1029–1058.
Romanek, C., Grossman, E. and Morse, J. 1992. Carbon isotopic fractionation in synthetic calcite, effects of temperature and precipitation rate. Geochimica et Cosmochimica Acta, 56, 419–430.
Sacks, L.A. and Tihansky, A.B., 1996. Geochemical and isotopic composition of ground water, with emphasis on sources of sulfate, in the Upper Floridan Aquifer and IntermediateAquifer Systemin Southwest Florida. U.S. Geological Survey, WRI Report, 96-4146, pp. 1–54.
Sheppard S.M.F. and Schwarcz, H.P. 1970. Fractionation of carbon and oxygen isotopes and magnesium between coexisting metamorphic calcite and dolomite. Contributions to Mineralogy and Petrology, 26, 161–198.
Strauss, H. 1997. The isotopic composition of sedimentary sulphur through time. Palaeogeography, Palaeoclimatology, Palaeoecology, 132, 97–118.
Stuiver, M. and Polach, H.A. 1977. Discussion: reporting of carbon 14 data. Radiocarbon, 19, 355–363.
Szafranek, M., Rodziewicz, R. and Niżyński, S. 1986. Hydrogeological documentation of groundwater intake at Permian deposits with report on investigations at the Sokołowsko – Unisław Śląski area, pp. 1–29. Unpublished. Przedsiębiorstwo Geologiczne; Wrocław. In Polish
Szaran, J. 1997. Achievement of carbon isotope equilibrium in the system (solution) – CO2 (gas). Chemical Geology, 142, 79–86.
Szaran, J. 1998. Carbon isotope fractionation between dissolved and gaseous carbon dioxide. Chemical Geology, 150, 331–337.
Turnau, E., Żelaźniewicz, A. and Franke, W. 2002. Middle to early late Visean onset of late orogenic sedimentation in the Intra-Sudetic Basin, West Sudetes: miospore evidence and tectonic. Geologia Sudetica, 34, 9–16.
Turner, J.V. 1982. Kinetic fractionation of carbon-13 during calcium carbonate precipitation. Geochimica et Cosmochimica Acta, 46, 1183–1191.
Van der Kemp, W.J.M., Appelo, C.A.J. and Walraevens, K. 2000. Inverse chemical modeling and radiocarbon dating of palaeogroundwaters: The Tertiary Ledo-Paniselian aquifer in Flanders, Belgium. Water Resources Research, 36, 1277–1287.
Veizer, J. 1983. Trace elements and isotopes in sedimentary carbonates. In: R.J. Reeder (Ed.), Carbonates:mineralogy and chemistry. Reviews in Mineralogy, 11, 265–300.
White, A.F. 1978. Sodium coprecipitation in calcite and dolomite. Chemical Geology, 23, 65–72.
Wicks, C.M. and Herman, J.S. 1994. The effect of a confining unit on the geochemical evolution of ground water in the Upper Floridian aquifer system. Journal of Hydrology, 153, 139–155.
Wigley, T.M.L. 1973. Chemical evolution of the system calcite–gypsum–water. Canadian Journal of Earth Science, 10, 306–315.
Wiśniewska, M. 2003. Quality of groundwaters abstracted at intake in Unisław Śląski (the Sudetes) against hydrogeological conditions, pp. 1–184. Unpublished. M.Sc. thesis. Institute of Hydrogeology and Engineering Geology; University of Warsaw. In Polish
Witczak, S., Szklarczyk, T., Kmiecik, E., Szczepańska, J., Zuber, A., Rożański, K. and Duliński, M. 2007. Hydrodynamic modelling, environmental tracers and hydrochemistry of a confined sandy aquifer (Kędzierzyn-Głubczyce Subtrough, SW Poland). Geological Quarterly, 51, 1–16.
Wojewoda, J. and Mastalerz K. 1989. Climate evolution, alloand autocyclity of sedimentation: an example from the Permo–Carboniferous continental deposits of the Sudetes, SW Poland). Przegląd Geologiczny, 37, 173–180. In Polish, English summary
Wojtkowiak, A. 2000a. Hydrogeological Map of Poland, 1 : 50 000, sheet Wałbrzych. Polish Geological Institute, Warsaw.
Wojtkowiak, A. 2002a. Hydrogeological Map of Poland, 1 : 50 000, sheet Kamienna Gora. Polish Geological Institute, Warsaw.
Wojcicka, T. and Tarkowski, S. 1968. Groundwater intake in Permian and Carboniferous deposits at Unisław Śląski area, pp. 1–83. Unpublished. Wałbrzyskie Przedsiębiorstwo Wodociągow i Kanalizacji, Wałbrzych. In Polish
Zhang, J., Quay, P.D. and Wilbur, D.O. 1995. Carbon isotope fractionation during gas–water exchange and dissolution of CO2. Geochimica et Cosmochimica Acta, 59, 107–114.
Zhu, C. and Murphy, W.M. 2000. On radiocarbon dating of ground water. Ground Water, 38, 802–804.
Zuber, A. (Ed.) 2007. Environmental tracers methods in hydrogeological researches, pp. 1–402. Ministry of the Environment, Warsaw, Poland. In Polish
Zuber, A. and Ciężkowski, W. 1997. Regional parameters of some fissured aquifers in the Bohemian massif obtained from environmental tracer data. Acta Universitatis Wratislaviensis, 2052, 181–197.
Zuber, A. and Cieżkowski, W. 2002. A combined interpretation of environmental isotopes for analyses of flow and transport parameters by making use of the lumped-parameter approach. In: Use of Isotopes for Analyses of Flow and Transport Dynamics in Groundwater Systems. IAEA–UIAGS, IAEA, Vienna, 1–22.
Zuber, A., Małecki, J. and Duliński, M. 2008. Ground water ages and altitudes of recharge areas in the Polish TatraMts. as determined from 3H, δ18O and δ2H data. Geological Quarterly, 52, 71–80.
Zuber, A., Michalczyk, Z. and Małoszewski, P. 2001. Great tritium ages explain the occurence of good-quality groundwater in a phreatic aquifer of an urban area, Lublin, Poland. Hydrogeology Journal, 9, 451–460.
Zuber, A. and Motyka, J. 1994. Matrix porosity as the most important parameter of fissured rocks for solute transport at large scales. Journal of Hydrology, 158, 19–46.
Zuber, A., Weise, S.M., Motyka, J., Osenbruck, K. and Rożański, K. 2004.Age and flow pattern of groundwater in a Jurassic limestone aquifer and related Tertiary sands derived from combined isotope, noble gas and chemical data. Journal of Hydrology, 286, 87–112.
Zuber, A., Weise, S.M., Osenbrűck, K., Grabczak, J. and Ciężkowski, W. 1995. Age and recharge area of thermal waters in Lądek Spa (Sudeten, Poland) deduced from environmental isotope and noble gas data. Journal of Hydrology, 167, 327–349.
Zuber, A., Weise, S.M., Osenbrück, K., Pajnowska, H. and Grabczak, J. 2000. Age and recharge pattern of water in the Oligocene of the Mazovian basin (Poland) as indicated by environmental tracers. Journal of Hydrology, 233, 174–188.
Zuber, A., Witczak, S., Rożański, K., Śliwka, I., Opoka, M., Mochalski, P., Kuc, T., Karlikowska, J., Kania, J., Jackowicz-Korczyński, M. and Duliński, M. 2005. Groundwater dating with 3H and SF6 in relation to mixing patterns, transport modelling and hydrochemistry. Hydrological Processes, 19, 2247–2275.
Cytuj : Fedorowski, J. ,Łuczyński, P. ,Kaufmann, B. ,Apolinarska, K. ,Dobrzyński, D. , Geochemistry and age of groundwater in a hydrochemically diversified aquifer (Permo-Carboniferous, the Intra-Sudetic Synclinorium, SWPoland) derived from geochemical modelling and isotopic studies. Acta Geologica Polonica Vol. 59, no. 3/2009