Hexactinellid sponge assemblages across the Campanian.Maastrichtian boundary in the Middle Vistula River section, central Poland

Czasopismo : Acta Geologica Polonica
Tytuł artykułu : Hexactinellid sponge assemblages across the Campanian.Maastrichtian boundary in the Middle Vistula River section, central Poland

Autorzy :
Walaszczyk, I.
Faculty of Geology, University of Warsaw, Al. Żwirki i Wigury 93, PL-02-089 Warsaw, Poland, i.walaszczyk@uw.edu.pl,
Remin, Z.
Faculty of Geology, University of Warsaw, Al. Zwirki i Wigury 93, PL-02-089 Warsaw, Poland,
Keutgen, N.
ZFiPBR, Uniwersytet Techniczno-Przyrodniczy Bydgoszcz, ul. Bernardyńska 6/8, PL-85-029 Bydgoszcz, Poland, keutgen@utp.edu.pl,
Świerczewska-Gładysz, E.
Institute of Earth Science, University of Lodz, ul. Narutowicza 88, 90-139 Łódź. Poland, eswiercz@geo.uni.lodz.pl,
Abstrakty : The sponge fauna from the Upper Campanian.lowermost Maastrichtian succession of the Middle Vistula River valley (central Poland) is represented mainly by dictyid hexactinellid sponges (Hexactinosida and Lychniscosida). Their greatest abundance and taxonomic variability is noted in the “Inoceramus” inkermanensis Zone (Upper Campanian), and they are less diverse in the overlying (Upper Campanian) Trochoceramus costaecus Zone and lower “Inoceramus” redbirdensis Zone. In the upper “Inoceramus” redbirdensis Zone (basal Maastrichtian in the sense of the Tercis rather than the Boreal definition) they are extremely rare. With the beginning of the Maastrichtian the number of dictyid sponges gradually increases. The observed changes in the abundance and taxonomic variability of the dictyid sponges indicate environmental changes in the latest Campanian.earliest Maastrichtian sea in the area. It seems that changes in basin bathymetry, confined to eustatic sea-level changes in the latest Campanian and early Maastrichtian, were the most important factor. Progressive shallowing of the basin in the latest Campanian drastically restricted the development of dictyids. In the peak regression, the sea level could have fallen to only several tens of metres. The gradual recovery of the sponge assemblages correlates with subsequent deepening of the basin with the start of the Maastrichtian.

Słowa kluczowe : ekologia, gąbki, kampan, kreda górna, mastrycht, Polska, Campanian-Maastrichtian boundary, ecology, Hexactinosida, Lychniscosida, Southern Poland, Sponges, Upper Cretaceous,
Wydawnictwo : Faculty of Geology of the University of Warsaw
Rocznik : 2012
Numer : Vol. 62, no. 4
Strony : 561 – 580
Bibliografia : 1. Abdel-Gawad, G.I. 1986. Maastrichtian non-cephalopod mollusks (Scaphopoda, Gastropoda and Bivalvia) of the Middle Vistula Valley, Central Poland. Acta Geologica Polonica, 36, 69–224.
2. Alexandrowicz, S. 1954. Turonian of the southern part of the Cracow Upland. Acta Geologica Polonica, 4, 361–390.
3. Austin, W.C., Conway, K.W., Barrie, J.V. and Krautter, M. 2007. Growth and morphology of a reef-forming glass sponge, Aphrocallistes vastus (Hexactinellida), and implications for recovery from widespread trawl damage. Porifera Research: Biodiversity, Innovation & Sustainability, Série Livros 28. Museu Nacional, Rio de Janeiro, 139–145.
4. Barczyk, W. 1956. On the Upper Cretaceous deposits on Bonarka near Cracow. Studia Societatis Scientiarum Torunansis, C 3 (2), 1–26. In Polish with English summary
5. Bieda, F. 1933. Sur les Spongiaires siliceux du Sénonien des environs de Cracovie. Rocznik Polskiego Towarzystwa Geologicznego, 9, 1–41.
6. Bless, M.J.M., Felder, P.J. and Jagt, J.W.M. 1991. Repeated Tethyan influences in the early Campanian to middle late Maastrichtian successions of Folx-les-Caves and Orp-lePetit (Eastern Brabant Massif, Belgium). Annales de la Société Geologique de Belgique, 113 (2), 179–197.
7. Błaszkiewicz, A. 1966. Remarks on Campanian and Maastrichtian stratigraphy of the Middle Vistula River valley (Central Poland). Geological Quarterly, 10, 1060–1071. In Polish with English summary
8. Błaszkiewicz, A. 1980. Campanian and Maastrichtian ammonites of the Middle Vistula River Valley, Poland; A stratigraphic-palaeontological study. Prace Instytutu Geologicznego, 42, 1–63.
9. Cieśliński, S. and Jaskowiak, M. 1973. Kreda. In: Budowa Geologiczna Polski. Stratygrafia 2 (Mezozoik). Warszawa, 580–615.
10. Conway, K.W., Barrie, J.V., Austin, W.C. and Luternauer, J.L. 1991. Holocene sponge bioherms on the western Canadian continental shelf. Continental Shelf Research, 11, 771–790.
11. Conway, K.W., Barrie, J.V. and Krautter, M. 2004. Modern siliceous sponge reefs in a turbid, siliciclastic setting: Fraser River delta, British Columbia, Canada. Neues Jahrbuch für Geologie und Paläontologie, 2004 (6), 335–350.
12. Conway, K.W., Barrie, J.V., Hill, P.R., Austin, W.C. and Picard, K. 2007. Mapping sensitive benthic habitats in the Strait of Georgia, coastal British Columbia, deep-water sponge and coral reefs. Geological Survey of Canada. Current research, 2007-A2, 1–8.
13. Cook, S.E., Conway, K.W. and Burd, B. 2008. Status of the glass sponge reefs in the Georgia Basin. Marine Environmental Research, 66, 80–86.
14. Defretin-Lefranc, S. 1960. Contribution à l’étude des spongiaires siliceux du Crétacé supérieur du Nord de la France. Thèses a la Faculte des Sciences de Lille (1958), 1–178.
15. Duarte, L.V., Krautter, M. and Soares, A.F. 2001. Bioconstructions à spongiaires silicieux dans le Lias terminal du Bassin lusitanien (Portugal): stratigraphie, sedimentologie et signification paléogéographique. Bulletin de la Société Géologique de France, 172 (5), 637–664.
16. Duplessis, K. and Reiswig, H.M. 2004. Three new species and a new genus of Farreidae (Porifera: Hexactinellida: Hexactinosida). Proceedings of the Biological Society of Washington, 117 (2), 199–212.
17. Finks, R.M. and Rigby, J.K. 2004. Geographic and Stratigraphic distribution. In: Roger Kaesler (Ed.), Treatise on Invertebrate Paleontology, Part E (Revised), Porifera 3. The Geological Society of America and University of Kansas, 275–296.
18. Friedrich, O., Herrle, J.O. and Hemleben, C. 2005. Climatic changes in the Late Campanian–Early Maastrichtian: micropaleontological and stable isotopic evidence from an epicontinental sea. The Journal of Foraminiferal Research, 35 (3), 228–247.
19. Gammon, P., James, N.P. and Pisera, A. 2000. Eocene spiculites and spongolites in southwestern Australia: Not deep, not polar, but shallow and warm. Geology, 28, 855–858.
20. Goldfuss, A. 1826–1833. Petrefacta Germaniae. Teil 1. Abbildungen und Beschreibungen der Petrefacten Deutschlands und der angrenzenden Länder. Düsseldorf (Arnz), 252 pp.
21. Hakenberg, M. and Świdrowska, J. 2001. Cretaceous basin evolution in the Lublin area along the Teisseyre-Tornquist Zone (SE Poland). Annales Societatis Geologorum Poloniae, 71, 1–20.
22. Haq, B.W., Hardenbol, J. and Vail, P.R. 1988. Mesozoic and Cenozoic chronostratigraphy and cycles of sea-level changes. In: C.K. Wilgus, B.S. Hastings, H. Posamentier, J. Van Wagoner, C.A. Ross and G.S.C. Kendall (Eds), Society of Economic Paleontologists and Mineralogists, Special Publication, 42, 71–108.
23. Helm, C. and Kosma, R. 2006. Reconstruction of the Late Cretaceous hexactinellid sponge Aphrocallistes alveolites (Roemer, 1841). Paläontologische Zeitschrift, 80, 22–33.
24. Hooper, J.N.A. and Van Soest, R.W.M. (Eds) 2002. Systema Porifera, a guide to the classification of the sponges. Kluwer Academic/Plenum Publishers, New York, 1–1708.
25. Hurcewicz, H. 1966. Siliceous sponges from the Upper Cretaceous of Poland; Part I, Tetraxonia. Acta Palaeontologica Polonica, 11, 15–129.
26. Hurcewicz, H. 1968. Siliceous sponges from the Upper Cretaceous of Poland; Part II, Monaxonia and Triaxonia. Acta Palaeonologica Polonica, 13, 3–96.
27. Ijima, I. 1927. The Hexactinellida of the Siboga Expedition. Siboga-Expeditie, 6, 1–383.
28. Janussen, D. and Tendal, O.S. 2007. Diversity and distribution of Porifera in the bathyal and abyssal Weddell Sea and adjacent areas. Deep-sea Research, part II, 54, (16–17), 1864–1875.
29. Jarvis, I., Mabrouk, A., Moody, R.T.J. and De Cabrera, S.C. 2002. Late Cretaceous (Campanian) carbon isotope events, sea-level change and correlation of the Tethyan and Boreal realms: Palaeogeography, Palaeoclimatology, Palaeoecology, 188, 215–248.
30. Kauffman, E.G. 1986. High-resolution event stratigraphy: Regional and global Cretaceous bio-events. In: O.H. Walliser (Ed.), Lecture Notes in Earth Science, 8: Global Bio-Events, 1225–236.
31. Kelly, M., Ellwood, M., Tubbs, L. and Buckeridge, J. S. 2007. The lithistid Demospongiae in New Zealand waters: species composition and distribution. In: M. R. Custódio, G. Lôbo-Hajdu, E. Hajdu and G. Muricy (Eds), Porifera research: biodiversity, innovation and sustainability. Série Livros 28. Museu Nacional, Rio de Janeiro, 393–404.
32. Kennedy, W.J., Cobban, W.A. and Scott, G.R. 1992. Ammonite correlation of the uppermost Campanian of Western Europe, the U.S. Gulf Coast, Atlantic Seaboard and Western Interior, and the numerical age of the base of the Maastrichtian. Geological Magazine, 129 (4), 497–500.
33. Keutgen, N., Remin, Z. and Walaszczyk, I. 2012. Early representatives of the belemnite genus Belemnella (Cephalopoda) from the uppermost Campanian–Lower Maastrichtian of the Middle Vistula River Valley section, central Poland. Acta Geologica Polonica, 62 (4), 535–559.
34. Koltun, V.M. 1967. Glass, or Hexactinellid sponges of the Northern and Far-Eastern Seas of the USSR (Class Hyalospongiae). Opredelitel po Faune SSSR, 94, 1–124. In Russian
35. Koltun, V.M. 1970. Sponges of the Arctic and Antarctic; a faunistic review. Symposia of the Zoological Society of London, 25, 285–297.
36. Krautter, M. 1997. Aspekte zur Paläökologie postpaläozoischer Kieselschwämme. Profil, 11, 199–324.
37. Krautter, M. 1998. Ecology of siliceous sponges – application to the environmental interpretation of the Upper Jurassic sponge facies (Oxfordian) from Spain. Cuadernos de Geologia Ibèrica, 24, 223–239.
38. Krautter, M., Conway, K.W., Barrie, J.V. and Neuweiler, M. 2001. Discovery of a ”Living Dinosaur”: Globally Unique Modern Hexactinellid Sponge Reefs off British Columbia, Canada. Facies, 44, 265–282.
39. Krautter, M., Conway, K.W. and Barrie, J.V. 2006. Recent hexactinosidian sponge reefs (silicate mounds) off British Columbia, Canada: Frame-building processes. Journal of Paleontology, 80 (1), 38–48.
40. Krasko, A., Lorenz, B., Batel, R., Schröder, H.C., Müller, L.M. and Müller, W.E. 2000. Expression of silicatein and collagen genes in the marine sponge Suberites domuncula is controlled by silicate and myotrophin. European Journal of Biochemistry, 267 (15), 4878–4887.
41. Leinfelder, R.R., Werner, W., Nose, M., Schmid, D.U., Krautter, M., Laternser, R., Takaks, M. and Hartmann, D. 1996. Paleoecology, growth parameters and dynamics of coral, sponge and microbialite reefs from the Late Jurassic. In: J. Reitner, F. Neuweiler and F. Gunkel (Eds), Global and regional controls on biogenic sedimentation. I. Reef evolution. Research Reports. Göttinger Arbeiten zur Geologie und Paläontologie, Sb 2, 227–248.
42. Lévi, C. and Lévi, P. 1983. Éponges Tétractinellides et Lithistides bathyales de Nouvelle-Calédonie. Bulletin Muséum National d’Histoire Naturelle Paris, série 4, 5 (A1), 241–263.
43. Leys, S. and Lauzon, N.R.J. 1998. Hexactinellid sponge ecology, growth rates and seasonality in deep water sponges. Journal of Experimental Marine Biology and Ecology, 230, 111–129.
44. Leys, S.P., Wilson, K., Holeton, C., Reiswig, H.M., Austin, W.C. and Tunniclif, V. 2004. Patterns of glass sponge (Porifera, Hexactinellida) distribution in coastal waters of British Columbia, Canada. Marine Ecology Progress Series, 283, 133–149.
45. Linnert, C. and Mutterlose, J. 2009. Evidence of increasing surface water oligotrophy during the Campanian–Maastrichtian boundary interval, calcareous nannofossils from DSDP Hole 390A (Blake Nose). Marine Micropaleontology, 73, 26–36.
46. Machalski, M. 2012. Stratigraphically important ammonites from the Campanian–Maastrichtian boundary interval of the Middle Vistula River section, central Poland. Acta Geologica Polonica, 62 (1), 91–116.
47. Maldonado, M. and Young C.M. 1996. Bathymetric patterns of sponge distribution on the Bahamian Slope. Deep-sea Research, part I, 43 (6), 897–915.
48. Maldonado, M., Carmona, M.C., Uriz, M. J. and Cruzado A. 1999. Decline in Mesozoic reef-building sponges explained by silicon limitation. Nature, 401, 785–788.
49. Manconi, R. and Serusi, A. 2008. Rare sponges from marine caves: discovery of Neophrissospongia nana nov. sp. (Demospongiae, Corallistidae) from Sardinia with an annotated checklist of Mediterranean lithistids. ZooKeys, 4, 71–87.
50. Mantell, G. 1822. The fossils of the South Downs or illustrations of the Geology of Sussex. London, 320 pp.
51. McClintock, J.B., Amsler, C.D., Baker, B.J. and Van Soest, R.W.M. 2005. Ecology of Antarctic Marine Sponges, An Overview. Integrative and Comparative Biology, 45 (2), 359–368.
52. Mehl, D. 1992. Die Entwicklung der Hexactinellida seit dem Mesozoikum, Paläobiologie, Phylogenie und Evolutionsökologie. Berliner geowissenschaftliche Abhandlungen, E2, 1–164.
53. Mehl, D. and Niebuhr, B. 1995. Diversität und Wachstumsformen bei Coeloptychium (Hexactinellida, Lychniskosa) der Meiner Mulde (Untercampan, N-Deutschland) und die Palökologie der Coeloptychidae. Berliner Geowisschenschaftliche Abhandlungen, E16, 91–107.
54. Michelin, H. 1840–1847. Iconographie zoophytologique. Description par localités et terrains des Polypiers fossiles de France et pays environnants. P. Bertrand, Paris, 348 pp.
55. Michniak, R. 1979. Origin of chert nodules in the Upper Maastrichtian siliceous limestones from the environs of Kazimierz Dolny on the Vistula River. Archiwum Mineralogiczne, 35, 87–108. In Polish with English summary
56. Miller, K.G., Sugarman, P.J., Browning, J.V., Kominz, M.A., Hernández, J.C., Olsson, R.K., Wright, J.D., Feigenson, M.D. and Van Sickel, W. 2003. Late Cretaceous chronology of large, rapid sea-level changes: Glacioeustasy during the greenhouse world. Geology, 31, 585–588.
57. Nestler, H. 1961. Spongien aus der weissen Schreibkreide (unt. Maastricht) der Insel Rügen (Ostsee). Paläontologische Abhandlungen, 1, 1–70.
58. Niebuhr, B. 2005. Geochemistry and time-series analyses of orbitally forced Upper Cretaceous marl–limestone rhythmites (Lehrte West Syncline, northern Germany). Geological Magazine, 142 (1), 31–55.
59. Niebuhr, B. and Ernst, G. 1991. Faziesgeschichte und Entwicklungsdynamik von Campan, Maastricht und Eozän im Beienroder Becken (E-Niedersachsen). Zeitschrift der Deutschen Geologischen Gesellschaft, 142, 251–283.
60. Niebuhr, B., Hampton, M.J., Gallagher, L.T. and Remin, Z. 2011. Integrated stratigraphy of the Kronsmoor section (northern Germany), a reference point for the base of the Maastrichtian in the Boreal Realm. Acta Geologica Polonica, 61 (2), 193–214.
61. Niebuhr, B., Volkmann, R. and Schönfeld, J. 1997. Das obercampane polyplocum-Event der Lehrter Westmulde (Oberkreide, N-Deutschland): Bio-/ Litho-/ Sequenzstratigraphie, Fazies-Entwicklung und Korrelation. Freiberger Forschungsheft, C 468, 211–243.
62. Olszewska, D. 1990. The changes of foraminiferal assemblages from chalk deposits (Campanian/Maastrichtian) at Mielnik on Bug as evidences of basin depth fluctuations. Przegląd Geologiczny, 1990 (2), 57–61. In Polish with English summary
63. Olszewska-Nejbert, D. and Świerczewska-Gładysz, E. 2009. The phosphatized sponges from the Santonian (Upper Cretaceous) of the Wielkanoc Quarry southern Poland) as a tool in stratigraphical and environmental studies. Acta Geologica Polonica, 59 (4), 483–504.
64. Olszewska-Nejbert, D. and Świerczewska-Gładysz, E. 2011. Campanian (Late Cretaceous) hexactinellid sponges from the white chalk of Mielnik (Eastern Poland). Acta Geologica Polonica, 61 (4), 383–417.
65. Philips, J. 1829. Illustrations of the geology of Yorkshire, Part 1. The Yorkshire Coast. London.
66. Pile, A.J., Grant, A., Hinde, R. and Borowitzka, M.A. 2003. Heterotrophy on ultraplankton communities is an important source of nitrogen for a sponge–rhodophyte symbiosis. The Journal of Experimental Biology, 206, 4533–4538.
67. Pile, A.J. and Young, C.M. 2006. The natural diet of a hexactinellid sponge: Benthic–pelagic coupling in a deep-sea microbial food web. Deep-sea research, part I, 53, 1148–1156.
68. Pisera, A. 1997. Upper Jurassic siliceous sponges from the Swabian Alb: taxonomy and palaeoecology. Palaeontologia Polonica, 57, 1–216.
69. Pisera, A., Cachão, M. and Silva, C.M. 2006. Siliceous sponge spicules from the Miocene Mem Moniz marls (Portugal) and their environmental significance. Rivista Italiana di Paleontologia e Stratigrafia, 112 (2), 287–299.
70. Pożaryski, W. 1938. Senonstratigraphie im Durchbruch der Weichsel zwischen Rachów und Puławy in Mittelpolen. Biuletyn Państwowego Instytutu Geologicznego, 6, 1–94. In Polish with extended German Summary
71. Pożaryski, W. 1960a. An outline of stratigraphy and palaeogeography of the Cretaceous in the Polish Lowland. Prace Instytutu Geologicznego, 30, 377–418. In Polish with English summary
72. Pożaryski, W. 1960b. Phenomenon of hard ground in the Cretaceous section of Mielnik on the Bug river (eastern Poland). Kwartalnik Geologiczny, 4 (1), 105–112. In Polish with English summary.
73. Pusch, G.G. 1837. Polens Paläontologie. Stuttgart, 218 pp.
74. Putzer, H. 1942. Die oberste Kreide bei Bochotnica a.d. mittleren Weichsel. Zentralblatt für Mineralogie, Geologie und Paläontologie, B, 12, 361–377.
75. Reid, R.E.H. 1958–1964. A monograph of the Upper Cretaceous Hexactinellida of Great Britain and Northern Ireland. Part I–IV. Palaeontographical Society Monograph. London, xlvii-xlviii, 1–154.
76. Reid, R.E.H. 1968. Bathymetric distribution of Calcarea and Hexactinellida in the present and past. Geological Magazine, 105, 546–559.
77. Reiswig, H.M. 1990. In situ feeding in two shallow-water hexactinellid sponges. In: K. Rützler (Ed.), New Perspectives in Sponge biology. Smithsonian Institution Press. Washington. 1504–1510.
78. Reiswig, H.M. and Wheeler, B. 2002. Family Euretidae Zittel, 1877. In: J.N.A. Hooper and R.W.M. van Soest (Eds), Systema Porifera: A Guide to the Classification of sponges, p. 1301–1331. Kluwer Academic/Plenum; Amsterdam.
79. Remin, Z. 2007. Analiza paleontologiczna i znaczenie stratygraficzne belemnitów górnego kampanu i dolnego mastrychtu profilu doliny środkowej Wisły, pp. 1–163. Wydział Geologii Uniwersytetu Warszawskiego; Warszawa. unpublished PhD thesis
80. Remin, Z. 2012. The Belemnella stratigraphy of the Campanian–Maastrichtian boundary; a new methodological and taxonomic approach. Acta Geologica Polonica, 62 (4), 495–533.
81. Reuss, A.E. 1845–1846. Die Versteinerungen der böhmischen Kreideformation. E. Schweizerbart, Stuttgart, 148 pp.
82. Roemer, F.A. 1841. Die Versteinerungen des norddeutschen Kreidegebirges, Hannover, 145 pp.
83. Roemer, F.A. 1864. Die Spongitarien des norddeutschen Kreidegebirges. Palaeontographica 13, 1–63.
84. Różycki, S.Z. 1938. Stratigraphie und Tektonik der Kreideablagerungen der Umgebung von Lelów (südöstlisch von Częstochowa). Sprawozdania Państwowego Instytutu Geologicznego, 9 (2), 127–176.
85. Rützler, K. and Macintyre, I.G. 1978. Siliceous sponge spicules in coral reef sediments. Marine Biology, 49, 147–159.
86. Schlacher-Hoenlinger, M.A., Pisera, A. and Hooper, J. N.A. 2005. Deep-sea “Lithistid” assemblages from the Norfolk Ridge (New Caledonia), with descriptions of seven new species and a new genus (Porifera: Demospongiae). Zoosytema 27, 649–698.
87. Schlüter, C.A. 1870. Ueber die jungsten Schichten der unteren Senon-Bildungen und deren Verbreitung. Verhandlungen des Naturhistorischen Vereins der Preussischen Rheinlande und Westfalens, 25, 92–93.
88. Schmidt, O. 1870. Grundzüge einer Spongien-Fauna des atlantischen Gebietes. Leipzig, 88 pp.
89. Schneider, S., Niebuhr, B., Wilmsen, M. and Vodrážka, R. 2011. Between the Alb and the Alps – The fauna of the Upper Cretaceous Sandbach Formation (Passau region, southeast Germany). Bulletin of Geosciences, 86 (4), 785–816.
90. Schrammen, A. 1899. Beitrag zur Kenntnis der Obersenonen Tetractinelliden. Mitteilungen aus dem Roemer-Museum Hildesheim, 10, 1–9.
91. Schrammen, A. 1902. Neue Hexactinelliden aus der oberen Kreide. Mitteilungen aus dem Roemer-Museum Hildesheim, 15, 1–26.
92. Schrammen, A. 1903. Zur Systematik der Kieselspongien. Mitteilungen aus dem Roemer-Museum Hildesheim, 19, 1–21.
93. Schrammen, A. 1910–1912. Die Kieselspongien der oberen Kreide von Nordwestdeutschland. I. Tetraxonia, Monaxonia und Silicea incertae sedis. II. Triaxonia (Hexactinellida). Palaeontographica, Supplement, 5, 1–385.
94. Skupien, P. and Mohamed, O. 2008. Campanian to Maastrichtian palynofacies and dinoflagellate cysts of the Silesian. Unit, Outer Western Carpathians, Czech Republic. Bulletin of Geosciences, 83 (2), 207–224.
95. Smith, T. 1848. On the Ventriculitidae of the Chalk; their classification. Annals and Magazine of Natural History, Series 2, 1, 36–48, 203–220, 279–295, 352–373.
96. Sollas, W. J. 1888. Report on the Tetractinellida collected by H.M.S. Challanger, during the years 1873–1876. Challanger Report, Zoology, 5, 1–458.
97. Sujkowski, Z. 1931. Petrografia kredy Polski. Kreda z głębokiego wiercenia w Lublinie w porównaniu z kredą niektórych innych obszarów Polski. Sprawozdania Państwowego Instytutu Geologicznego, 6, 485–628.
98. Świerczewska-Gładysz, E. 1997. Pochodzenie i obszar źródłowy warstwy margla glaukonitowego z gąbkami w Korzkwi (okolice Krakowa, santon). In: J. Wojewoda (Ed.), Obszary Źródłowe: Zapis w Osadach, 53–64. Wrocław. In Polish with English summary
99. Świerczewska-Gładysz, E. 2006. Late Cretaceous siliceous sponges from the Middle Vistula River Valley (Central Poland) and their palaeoecological significance. Annales Societatis Geologorum Poloniae, 76 (3), 227–296.
100. Świerczewska-Gładysz, E. and Olszewska-Nejbert, D. 2006. The origin of phosphatized sponges from the Danian glauconitic sandstone from Nasiłów (central Poland, Vistula River valley). Przegląd Geologiczny, 54 (8), 710–719. In Polish with English summary
101. Tabachnick, K.R. 1988. Hexactinellid sponges from mountains of west Pacific. In: A.P. Kuznetsov and M.N. Sokolova, (Eds), Structural and functional researches of the marine benthos, 49–64. Moscov. In Russian
102. Termier, G. and Termier. H. 1981. Spongiaires du Crétacé Moyen. Cretaceous Research, 2, 427–433.
103. Ulbrich, H. 1974. Die Spongien der Ilsenburg-Entwicklung (Oberes Unter-Campan) der Subherzynen Kreidemulde. Freiburger Forschungsheft, C 291, 1–121.
104. Vacelet, J. 1969. Éponges de la roche du large et de l’étage bathal de Méditerranée. Mémoires du Muséum Nationald’Histoire Naturelle, Ser. A, 59, 145–219.
105. Van Soest, R.W.M. and Stentoft, N. 1988. Barbados deep-water sponges. In: P.W. Hummelinck and L.J. Van der Steen, (Eds), Studies on the Fauna of Curaçao and other Caribbean Islands, 70 (215), 1–175.
106. Vodrážka, R., Sklenář, J., Čech, S., Laurin, J. and Hradecká, L. 2009. Phosphatic intraclasts in shallow-water hemipelagic strata: a source of palaeoecological, taphonomic and biostratigraphic data (Upper Turonian, Bohemian Cretaceous Basin). Cretaceous Research, 30, 204–222.
107. Walaszczyk, I. 2004. Inoceramids and inoceramid biostratigraphy of the Upper Campanian to basal Maastrichtian of the Middle Vistula River section, Central Poland. Acta Geologica Polonica, 54 (1), 95–168.
108. Walaszczyk, I. 2012. Integrated stratigraphy of the Campanian – Maastrichtian boundary succession of the Middle Vistula River (central Poland) section; introduction. Acta Geologica Polonica, 62 (4), 463–471.
109. Whitney, F., Conway, K.W., Thomson, R.E., Barrie, J.V., Krautter, M. and Mungov, G. 2005. Oceanographic habitat of sponge reefs on the Western Canadian Continental Shelf. Continental Shelf Research 25, 211–226.
110. Wiedenmayer, F. 1994. Contribution to the knowledge of post-Paleozoic neritic and archibenthal sponges (Porifera). Schweizerische Paläontologische Abhandlungen, 116, 1–147.
111. Wiese, F. and Wood, C. 2001. The hexactinellid sponge Cystispongia bursa (Quenstedt 1852) from the Turonian and Lower Coniacian (Upper Cretaceous) of northern Germany and England. Cretaceous Research, 22, 377–387.
112. Wiese, F., Čech, S., Ekrt, B., Košt’ák, M., Mazuch, M. and Voigt, S. 2004. The Upper Turonian of the Bohemian Cretaceous Basin (Czech Republic) exemplified by the Úpohlavy working quarry: integrated stratigraphy and palaeoceanography of a gateway to the Tethys. Cretaceous Research, 25 (4), 329–352.
113. Wilmsen, M., Vodrážka, R. Niebuhr, B. 2011. The Upper Cenomanian and Lower Turonian of Lockwitz (Dresden area, Saxony, Germany): lithofacies, stratigraphy and fauna of a transgressive succession. Freiberger Forschungshefte, C 540, 27–45.
114. Yahel, G., Sharp, J.H., Marie, D., Häse, C. and Genin, A. 2003. In situ feeding and element removal in the symbiontbearing sponge Theonella swinhoei: Bulk DOC is the major source for carbon. Limnology and Oceanography, 48 (1), 141–149.
115. Yahel, G., Eerkes-Medrano, D.I. and Lays, S.P. 2006. Size independent selective filtration of ultraplankton by hexactinellid glass sponges. Aquatic Microbial Ecology, 45, 181–194.
116. Yahel, G., Whitney, F., Reiswig, H.M., Eerkes-Medrano, D.I. and Lays, S.P. 2007. In situ feeding and metabolism of glass sponges (Hexactinellida, Porifera) studied in a deep temperate fjord. Limnology and Oceanography, 52 (1), 428–440.
117. Zittel, K.A. 1876. Über Coleoptychium. Abhandlungen der Königlichen Bayerischen Akademie der Wissenschaften, Mathematisch-Physische Klasse, 12, 1–80.
118. Zittel, K.A. 1877. Studien über fossile Spongien. I. Hexactinellidae. Abhandlungen der Königlichen Bayerischen Akademie der Wissenschaften, Mathematisch-Physische Klasse, 13, 1–63.
119. Žítt, J., Vodrážka, R., Hradecká, L., Svobodová, M. and Zágoršek, K. 2006. Late Cretaceous environments and communities as recorded at Chrtníky (Bohemian Cretaceous Basin, Czech Republic). Bulletin of Geosciences, 81, 43–79
120. Žítt, J., Vodrážka, R., Hradecká, L., Svobodová, M. and Zágoršek, K. 2010. Palaeoenvironments and facies on a progressively flooded rocky island (Upper Cenomanian – Lower Turonian, Bohemian Cretaceous Basin). Journal of the National Museum (Prague), Natural History Series, 179 (22), 223–234.
Cytuj : Walaszczyk, I. ,Remin, Z. ,Keutgen, N. ,Świerczewska-Gładysz, E. , Hexactinellid sponge assemblages across the Campanian.Maastrichtian boundary in the Middle Vistula River section, central Poland. Acta Geologica Polonica Vol. 62, no. 4/2012