Journal : Acta Geophysica
Article : Hindcasting global temperature by evolutionary computation

Authors :
Nowożyński, K.
Institute of Geophysics, Polish Academy of Sciences, Warszawa, Poland, kn@igf.edu.pl,
Ślęzak, K.
Institute of Geophysics, Polish Academy of Sciences, Warszawa, Poland, katarzyna.slezak@igf.edu.pl,
Kądziałko-Hofmokl, M.
Institute of Geophysics, Polish Academy of Sciences, Warszawa, Poland, magdahof@igf.edu.pl,
Szczepański, J.
Institute of Geological Sciences, University of Wrocław, Wrocław, Poland, jacek.szczepanski@ing.uni.wroc.pl,
Werner, T.
Institute of Geophysics, Polish Academy of Sciences, Warszawa, Poland, twerner@igf.edu.pl,
Jeleńska, M.
Institute of Geophysics, Polish Academy of Sciences, Warszawa, Poland, bogna@igf.edu.p,
Nejbert, K.
Institute of Geochemistry, Mineralogy and Petrology, Warsaw University, Warszawa, Poland, knejbert@uw.edu.pl,
Shireesha, M.
National Geophysical Research Institute, Council of Scientific and Industrial Research, Hyderabad, India, shireeshageo.m@gmail.com,
Harinarayana, T.
National Geophysical Research Institute, Council of Scientific and Industrial Research, Hyderabad, India, thari54@yahoo.com,
Romashkova, L.
Institute of Earthquake Prediction Theory and Mathematical Geophysics, Russian Academy of Sciences, Moscow, Russia, lina@mitp.ru,
Peresan, A.
The Abdus Salam International Centre for Theoretical Physics, SAND Group, Trieste, Italy,
Arosio, D.
Department of Structural Engineering, Politecnico di Milano, Milan, Italy, diego.arosio@polimi.it,
Longoni, L.
Department of Environmental, Hydraulic, Infrastructures and Surveying Engineering, Politecnico di Milano, Milan, Italy, laura.longoni@polimi.it,
Papini, M.
Department of Environmental, Hydraulic, Infrastructures and Surveying Engineering, Politecnico di Milano, Milan, Italy, monica.papini@polimi.it,
Zanzi, L.
Department of Structural Engineering, Politecnico di Milano, Milan, Italy, luigi.zanzi@polimi.it,
Kostecki, A.
Oil and Gas Institute, Kraków, Poland, kostecki@inig.pl,
Półchłopek, A.
Oil and Gas Institute, Kraków, Poland, polchlopek@inig.pl,
Abbaszadeh, M.
Department of Surveying and Geomatics Engineering, Faculty of Civil Engineering, Babol Noushirvani University of Technology, Babol, Iran, m.abbaszadeh@nit.ac.ir,
Sharifi, M.
Department of Surveying and Geomatics Engineering, College of Engineering, University of Tehran, Tehran, Iran, sharifi@ut.ac.ir,
Nikkhoo, M.
Faculty of Geodesy and Geomatics, K.N. Toosi University of Technology, Tehran, Iran, Mehdi_nikkhoo@yahoo.com,
Di Cristo, C.
1Dipartimento di Ingegneria Civile e Meccanica, Università degli Studi di Cassino e del Lazio Meridionale, Cassino, Italy, dicristo@unicas.it,
Iervolino, M.
Dipartimento di Ingegneria Civile, Design, Edilizia e Ambiente, Seconda Università di Napoli, Aversa, Italy, michele.iervolino@unina2.it,
Vacca, A.
Dipartimento di Ingegneria Civile, Design, Edilizia e Ambiente, Seconda Università di Napoli, Aversa, Italy, vacca@unina.it,
Gąsiorowski, D.
Faculty of Civil and Environmental Engineering, Gda ń sk University of Technology, Gdańsk, Poland, gadar@pg.gda.pl,
Ostojski, M.
Institute of Meteorology and Water Management, National Research Institute, Warszawa, Poland , Mieczyslaw.Ostojski@imgw.pl,
Stovin, V.
Department of Civil and Structural Engineering, University of Sheffield, Sheffield, UK , v.stovin@sheffield.ac.uk,
Guymer, I.
School of Engineering, University of Warwick, Coventry, UK,
Stanisławska, K.
Institute of Computing Science, Poznań University of Technology, Poznań, Poland,
Kundzewicz, Z. W.
Institute for Agricultural and Forest Environment, Polish Academy of Sciences, Poznań, Poland, kundzewicz@yahoo.com,
Krawiec, K.
Institute of Computing Science, Poznań University of Technology, Poznań, Poland,
Abstract : Interpretation of changes of global temperature is important for our understanding of the climate system and for our confidence in projections for the future. Massive efforts have been devoted to improve the accuracy of reproducing the global temperature by the available climate models, but the hindcasts are still inaccurate. Notwithstanding the need to further advance climate models, one may consider data-driven approaches, providing practically useful results in a simpler and faster way. Without assuming any prior knowledge about physics and without imposing a model structure that encapsulates the existing knowledge about the underlying processes, we hindcast global temperature by automatically identified evolutionary computation models. We use 60 years of records of global temperature and climate drivers, with training and testing periods being 1950–1999 and 2000–2009, respectively. This paper demonstrates that the global temperature observed in the past is mimicked with reasonably good accuracy. Evolutionary computation holds promise for modeling the global climate system, which looks hopelessly complex in classical perspective.

Keywords : global temperature, climate drivers, climate change attribution, evolutionary computation, genetic programming,
Publishing house : Instytut Geofizyki PAN
Publication date : 2013
Number : Vol. 61, no. 3
Page : 732 – 751

Bibliography
: Hansen, J., M. Sato, P. Kharecha, and K. von Schuckmann (2011), Earth’s energy imbalance and implications, Atmos. Chem. Phys. 11, 13421-13449, DOI: 10.5194/acp-11-13421-2011.
Hegerl, G.C., F.W. Zwiers, P. Braconnot, N.P. Gillett, C. Luo, J.A. Marengo Orsini, N. Nicholls, J.E. Penner, and P.A. Stott (2007), Understanding and attributing climate change. In: S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor, and H.L. Miller (eds.), Climate Change 2007: The Physical Science Basis, 10th Session of Working Group I of the IPCC, February 2007, Paris, France, Cambridge University Press, Cambridge , 663-745.
IPCC (Intergovernmental Panel on Climate Change) (2007), Summary for policymakers. In: S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor, and H.L. Miller (eds.), Climate Change 2007: The Physical Science Basis, 10th Session of Working Group I of the IPCC, February 2007, Paris, France, Cambridge University Press, Cambridge, http://www.ipcc.ch/pdf/assessment-report/ar4/wg1/ar4-wg1-spm.pdf.
Koza, J.R., M.A. Keane, M.J. Streeter, W. Mydlowec, J. Yu, and G. Lanza (2003), Genetic Programming IV: Routine Human-Competitive Machine Intelligence, Kluwer Academic Publ., Hingham, URL http://www.genetic-programming. org/gpbook4toc.html.
Krawiec, K., and B. Wieloch (2010), Automatic generation and exploitation of related problems in genetic programming. In: IEEE Congress on Evolutionary Computation, IEEE Press, Barcelona, DOI: 10.1109/CEC.2010.5586120.
Kundzewicz, Z.W., and S. Huang (2010), Seasonal temperature extremes in Potsdam, Acta Geophys. 58, 6, 1115-1133, DOI: 10.2478/s11600-010-0026-5.
Kundzewicz, Z.W., and E.Z. Stakhiv (2010), Are climate models “ready for prime time” in water resources management applications, or is more research needed? Hydrol. Sci. J. 55, 7, 1085-1089, DOI: 10.1080/02626667.2010.513211.
Lean, J.L., and D.H. Rind (2008), How natural and anthropogenic influences alter global and regional surface temperatures: 1889 to 2006, Geophys. Res. Lett. 35, 18, L18701, DOI: 10.1029/2008GL034864.
Meehl, G.A., W.M. Washington, C.M. Ammann, J.M. Arblaster, T.M.L. Wigley, and C. Tebaldi (2004), Combinations of natural and anthropogenic forcings in twentieth-century climate, J. Climate 17, 19, 3721-3727, DOI: 10.1175/1520-0442(2004)017<3721:CONAAF>2.0.CO;2.
Myhre, G., A. Myhre, and F. Stordal (2001), Historical evolution of radiative forcing of climate, Atmos. Environ. 35, 13, 2361-2373, DOI: 10.1016/S1352-2310(00)00531-8.
Schmidt, M., and H. Lipson (2009), Distilling free-form natural laws from experimental data, Science 324, 5923, 81-85, DOI: 10.1126/science. 1165893.
Shahid, S., M. Hasan, and R.U. Mondal (2007), Modeling monthly mean maximum temperature using genetic programming, Int. J. Soft Comput. 2, 5, 612-616.
Stanisławska, K., K. Krawiec, and Z.W. Kundzewicz (2012), Modeling global temperaturę changes with genetic programming, Comput. Math. Appl. 64, 12, 3717-3728, DOI: 10.1016/j.camwa.2012.02.049.
Trenberth, K. (2010), More knowledge, less certainty, Nature Reports Climate Change 2, 20, DOI: 10.1038/climate.2010.06.
Tung, C.-P., T.-Y. Lee, Y.-C.E. Yang, and Y.-J. Chen (2009), Application of genetic programming to project climate change impacts on the population of Formosan Landlocked Salmon, Environ. Modell. Softw. 24, 9, 1062-1072, DOI: 10.1016/j.envsoft.2009.02.012.
DOI :
Qute : Nowożyński, K. ,Ślęzak, K. ,Kądziałko-Hofmokl, M. ,Szczepański, J. ,Werner, T. ,Jeleńska, M. ,Nejbert, K. ,Shireesha, M. ,Harinarayana, T. ,Romashkova, L. ,Peresan, A. ,Arosio, D. ,Longoni, L. ,Papini, M. ,Zanzi, L. ,Kostecki, A. ,Półchłopek, A. ,Abbaszadeh, M. ,Sharifi, M. ,Nikkhoo, M. ,Di Cristo, C. ,Iervolino, M. ,Vacca, A. ,Gąsiorowski, D. ,Ostojski, M. ,Stovin, V. ,Guymer, I. ,Stanisławska, K. ,Kundzewicz, Z. W. ,Krawiec, K. ,Krawiec, K. , Hindcasting global temperature by evolutionary computation. Acta Geophysica Vol. 61, no. 3/2013
facebook