Hydrodynamic Equilibrium for Sediment Transport and Bed Response to Wave Motion

Czasopismo : Acta Geophysica
Tytuł artykułu : Hydrodynamic Equilibrium for Sediment Transport and Bed Response to Wave Motion

Autorzy :
Namvaran, M.
Kerman Graduate University of Technology, Geophysics Department, Kerman, Iran, m.namvaran@kgut.ac.ir,
Negarestni, A.
Kerman Graduate University of Technology, Electrical Engineering Department, Kerman, Iran, a.negarestani@kgut.ac.ir,
Grad, M.
Institute of Geophysics, Faculty of Physics, University of Warsaw, Warsaw, Poland, mgrad@mimuw.edu.pl,
Polkowski, M.
Institute of Geophysics, Faculty of Physics, University of Warsaw, Warsaw, Poland,
Wilde-Piórko, M.
Institute of Geophysics, Faculty of Physics, University of Warsaw, Warsaw, Poland,
Suchcicki, J.
Institute of Geophysics, Polish Academy of Sciences, Warsaw, Poland,
Arant, T.
Institute of Geophysics, Polish Academy of Sciences, Warsaw, Poland,
Teisseyre, R.
Institute of Geophysics, Polish Academy of Sciences, Warszawa, Poland, rt@igf.edu.pl,
Moilanen, J.
Lomonosov Moscow State University, Moscow, Russia, moilanen@mail.ru,
Pushkarev, P.Yu.
Lomonosov Moscow State University, Moscow, Russia, pavel_pushkarev@list.ru,
Sas, W.
Faculty of Civil- and Environmental Engineering, Warsaw University of Life Sciences (SGGW), Warsaw, Poland, wojciech_sas@sggw.pl,
Gabryś, K.
Faculty of Civil- and Environmental Engineering, Warsaw University of Life Sciences (SGGW), Warsaw, Poland, katarzyna_gabrys@sggw.pl,
Szymański, A.
Faculty of Civil- and Environmental Engineering, Warsaw University of Life Sciences (SGGW), Warsaw, Poland, ajozy_szymanski@sggw.pl,
Oliviera, S. D. S.
Faculty of Geophysics, Federal University of Para, Belem, Brazil; Faculty of Meteorology, Federal University of Para, Belem, Brazil , frasol@ufpa.br,
Figueredo, J. J. S.
Geoprocessados, Virlemosa, Mexico, lucas.batista.freitas@gmail.com,
Li, Ch.
School of Computer Engineering and Science, Shanghai University, Shanghai, China,
Dai, Y.
School of Computer Engineering and Science, Shanghai University, Shanghai, China,
Zhao, J.
School of Computer Engineering and Science, Shanghai University, Shanghai, China,
Zhou, S.
School of Computer Engineering and Science, Shanghai University, Shanghai, China,
Yin, J.
School of Computer Engineering and Science, Shanghai University, Shanghai, China,
Xue, D.
School of Computer Engineering and Science, Shanghai University, Shanghai, China,
Wu, W.
State Key Laboratory of Petroleum Resource and Prospecting, China University of Petroleum, Beijing, China, wwsheng@cup.edu.cn,
Niu, W.
State Key Laboratory of Petroleum Resource and Prospecting, China University of Petroleum, Beijing, China,
Tong, D.
Daqing Drilling Corporation, PetroChina, Daqing, China,
Luo, L.
CCDC Well Logging Company, Chongqing, China,
Zhang, R.
Department of Civil Engineering, North China Institute of Science and Technology, Sanhe-Hebei, China, zhangruihongw@163.com,
Zhang, L.
Department of Civil Engineering, North China Institute of Science and Technology, Sanhe-Hebei, China, zhanglihua@ncist.edu.cn,
Kaczmarek, L. M.
University of Technology, Department of Geotechnics, Koszalin, Poland, leszek.kaczmarek@tu.koszalin.pl,
Sawczyński, Sz.
University of Warmia and Mazury, Department of Mechanics and Civil Engineering Constructions, Olsztyn, Poland, sz.sawczynski@uwm.edu.pl,
Biegowski, J.
Polish Academy of Sciences, Institute of Hydroengineering, Gdańsk, Poland, jarbieg@ibwpan.gda.pl,
Abstrakty : An experimental and theoretical identification of hydrodynamic equilibrium for sediment transport and bed response to wave motion are considered. The comparison between calculations and the results of laboratory experiments indicates the linear relation between sediment transport rate and the thickness zm of bed layer in which sediments are in apparent rectilinear motion. This linear relationship allows to use the first order “upwind” numerical scheme of FDM ensuring an accurate solution of equation for changes in bed morphology. However, it is necessary to carry out a decomposition of the sediment transport into transport in onshore direction during wave crest and offshore direction during wave trough. Further, the shape of bed erosion in response to sediment transport coincides with the trapezoid envelope or with part of it, when some sediments still remain within it. Bed erosion area is equal to the one of a rectangle with thickness zm.

Słowa kluczowe : hydrodynamic equilibrium, linear equation of morphological changes, thickness of eroded/accumulated sediment, sand trap,
Wydawnictwo : Instytut Geofizyki PAN
Rocznik : 2015
Numer : Vol. 63, no. 2
Strony : 486 – 513
Bibliografia : 1 Balouin, Y., H. Howa, R. Pedreros, and D. Michel (2005), Longshore sediment movements from tracers and models, Praia de Faro, South Portugal, J. Coast. Res. 21, 1, 146-156, DOI: 10.2112/01066.1.
2 Bialik, R.J. (2013), Numerical study of near-bed turbulence structures influence on the initiation of saltating grains movement, J. Hydrol. Hydromech. 61, 3, 202-207, DOI: 10.2478/johh-2013-0026.
3 Bialik, R.J., and W. Czernuszenko (2013), On the numerical analysis of bed-load transport of saltating grains, Int. J. Sediment Res. 28, 3, 413-420, DOI:10.1016/S1001-6279(13)60051-7.
4 Bialik, R.J., V.I. Nikora, and P.M. Rowiński (2012), 3D Lagrangian modelling of saltating particles diffusion in turbulent water flow, Acta Geophys. 60, 6, 1639-1660, DOI: 10.2478/s11600-012-0003-2.
5 Callaghan, D.P., F. Saint-Cast, P. Nielsen, and T.E. Baldock (2006), Numerical solutions of the sediment conservation law; a review and improved formulation for coastal morphological modelling, Coast. Eng. 53, 7, 557-571, DOI:10.1016/j.coastaleng.2006.03.001.
6 Cayocca, F. (2001), Long-term morphological modeling of a tidal inlet: the Arcachon Basin, France, Coast. Eng. 42, 2, 115-142, DOI: 10.1016/s0378-3839(00)00053-3.
7 Chiang, Y.-Ch., and S.-S. Hsiao (2011), Coastal morphological modeling. In: A.J. Manning (ed.), Sediment Transport in Aquatic Environments, InTech, Shanghai, 203-230, DOI: 10.5772/22076.
8 Chiang, Y.-Ch., S.-S. Hsiao, and M.-C. Lin (2010), Numerical solutions of coastal morphodynamic evolution for complex topography, J. Marine Sci. Tech. 18, 3, 333-344.
9 Einstein, H.A. (1950), The Bed-load Function for Sediment Transportation in Open Channel Flows, Technical Bulletin, No. 1026, United States Department of Agriculture, Washington D.C., 71 pp.
10 Johnson, H.K., and J.A. Zyserman (2002), Controlling spatial oscillations in bed level update schemes, Coast. Eng. 46, 2, 109-126, DOI: 10.1016/s0378-3839(02)00054-6.
11 Kaczmarek, L.M. (1999), Moveable Sea Bed Boundary Layer and Mechanics of Sediment Transport, IBW PAN, Gdańsk.
12 Kaczmarek, L.M., J. Biegowski, and R. Ostrowski (2004), Modelling cross-shore intensive sand transport and changes of bed grain size distribution versus field data, Coast. Eng. 51, 5-6, 501-529, DOI: 10.1016/j.coastaleng.2004.05.007.
13 Kaczmarek, L.M., Sz. Sawczyński, and J. Biegowski (2011), Bathymetry changes and sand sorting during silting up of the channels: Part 1 – Conservation of sediment mass, Tech. Sci. 14, 1, 153-170.
14 Kuroiwa, M., J.W. Kamphuis, T. Kuchiishi, and Y. Matsubara (2004), A 3D morphodynamic model with shoreline change based on quasi-3D nearshore current model. In: Proc. 2nd Int. Conf. “Asian and Pacific Coasts 2003”, 29 February – 4 March 2004, Makuhari, Japan.
15 Long, W., J.T. Kirby, and Z. Shao (2008), A numerical scheme for morphological bed level calculations, Coast. Eng. 55, 2, 167-180, DOI: 10.1016/j.coastaleng.2007.09.009.
16 Moreno, P.A., and F.A. Bombardelli (2012), 3D numerical simulation of particleparticle collisions in saltation mode near stream beds, Acta Geophys. 60, 6, 1661-1688, DOI:10.2478/s11600-012-0077-x.
17 Plumb, R.A. (1979), Eddy fluxes of conserved quantities by small-amplitude waves, J. Atmos. Sci. 36, 9, 1699-1704, DOI: 10.1175/1520-0469(1979)036<1699:EFOCQB>2.0.CO;2.
18 Pruszak, Z., R. Wierzchnicki, A. Owczarczyk, and R.B. Zeidler (1996), Nearbed sediment concentration from tracer studies, Coast. Eng. Proc. 25, 3901-3912, DOI: 10.9753/icce.v25.25p.
19 Sawczyński, Sz. (2012), Bathymetry changes and sediment sorting within coastal structures: a case of the silting-up of navigation channels, Ph.D. Thesis, University of Technology, Koszalin, Poland (in Polish).
20 Sawczyński, Sz., L.M. Kaczmarek, and J. Biegowski (2011), Bathymetry changes and sand sorting during silting up of the channels: Part 2 – Modelling versus laboratory data, Tech. Sci. 14, 2, 171-192.
21 Struiksma, N., K.W. Olesen, C. Flokstra, and H.J. de Vriend (1985), Bed deformation in curved alluvial channels, J. Hydraul. Res. 23, 1, 57-79, DOI:10.1080/00221688509499377.
22 Szymkiewicz, R. (1999), Similarity of kinematic and diffusive waves: a comment on accuracy criteria for linearised diffusion wave flood routing: By K. Bajracharya and D.A. Barry Journal of Hydrology, vol. 195 (1997),200-217, J. Hydrol. 216, 3-4, 248-251, DOI:10.1016/s0022-1694(98)00276-5.
23 van Rijn, L.C. (1984), Sediment transport, part I: Bed load transport, J. Hydraul. Eng. 110, 10, 1431-1456, DOI: 10.1061/(ASCE)0733-9429(1984)110:10(1431).
24 van Rijn, L.C., R.L. Soulsby, P. Hoekstra, and A.G. Davies (eds.), (2005), SANDPIT, Sand Transport and Morphology of Offshore Mining Pits, Aqua Publications, The Netherlands.
25 Walstra, D.J.R., T. Chesher, A.G. Davies, J. Ribberink, P. Sergent, P. Silva, G. Vittori, R. Walther, and L.C. van Rijn (2005), Intercomparison of the state of the morphological models. In: L.C. van Rijn, R.L. Soulsby, P. Hoekstra, and A.G. Davies (eds.), SANDPIT, Sand Transport and Morphology of Offshore Mining Pits, Aqua Publications, The Netherlands, AY1–AY23.
26 Watanabe, A. (1988), Modeling of sediment and beach evolution. In: K. Horikawa (ed.), Nearshore Dynamics and Coastal Processes, University of Tokyo Press, Tokyo, 292-302.
27 Wiberg, P.L., and J.D. Smith (1985), A theoretical model for saltating grains in water, J. Geophys. Res. 90, C4, 7341-7354, DOI: 10.1029/JC090iC04p07341.
28 Yalin, M.S., and A.M.F. da Silva (2001), Fluvial Processes, IAHR Monograph, International Association for Hydraulic Research, Delft.
DOI :
Cytuj : Namvaran, M. ,Negarestni, A. ,Grad, M. ,Polkowski, M. ,Wilde-Piórko, M. ,Suchcicki, J. ,Arant, T. ,Teisseyre, R. ,Moilanen, J. ,Pushkarev, P.Yu. ,Sas, W. ,Gabryś, K. ,Szymański, A. ,Oliviera, S. D. S. ,Figueredo, J. J. S. ,Li, Ch. ,Dai, Y. ,Zhao, J. ,Zhou, S. ,Yin, J. ,Xue, D. ,Wu, W. ,Niu, W. ,Tong, D. ,Luo, L. ,Zhang, R. ,Zhang, L. ,Kaczmarek, L. M. ,Sawczyński, Sz. ,Biegowski, J. , Hydrodynamic Equilibrium for Sediment Transport and Bed Response to Wave Motion. Acta Geophysica Vol. 63, no. 2/2015
facebook