Investigating dynamic coupling in geospace through the combined use of modeling, simulations and data analysis

Czasopismo : Acta Geophysica
Tytuł artykułu : Investigating dynamic coupling in geospace through the combined use of modeling, simulations and data analysis

Autorzy :
Lilensten, J.
Laboratoire de Planétologie de Grenoble, OSUG-CNRS, Grenoble, France,,
Zuccarello, F.
Dipartimento di Fisica e Astronomia, Universitá di Catania, Catania, Italy,,
Zuccarello, F.
Dipartimento di Fisica e Astronomia, Universitá di Catania, Catania, Italy,,
Lundstedt, H.
Swedish Institute of Space Physics, Lund, Sweden,,
Kretzschmar, M.
LPCE/CNRS, Orléans, France,,
Contarino, L.
INAF Osservatorio Astrofisico di Catania, Catania, Italy,,
Messerotti, M.
INAF-Trieste Astronomical Observatory, Trieste, Italy,,
Desorgher, L.
Physikalisches Institut, University of Bern, Bern, Switzerland,,
Usoskin, I. G.
Sodankylä Geophysical Observatory, University of Oulu, Oulu, Finland,,
Dudok de Wit, T.
LPCE, CNRS and University of Orléans, Orléans, France,,
Valtonen, E.
Space Research Laboratory, Department of Physics, University of Turku, Turku, Finland,,
Spurny, F.
Nuclear Physics Institute, Czech Academy of Sciences, Prague, Czech Republic,,
Daglis, I.
National Observatory of Athens, Institute for Space Applications and Remote Sensing, Athens, Greece,,
Abstrakty : Comprehensive understanding of the dynamics of the coupled solar wind-magnetosphere-ionosphere system is of utmost interest, both from the perspective of solar system astrophysics and geophysics research and from the perspective of space applications. The physical processes involved in the dynamical evolution of this complex coupled system are pertinent not only for the Sun-Earth connection, but also for major phenomena in other astrophysical systems. Furthermore, the conditions in geospace collectively termed space weather affect the ever increasing technological assets of mankind in space and therefore need to be understood, quantified and efficiently forecasted. The present collaborative paper communicates recent advances in geospace dynamic coupling research through modeling, simulations and data analysis and discusses future directions.

Słowa kluczowe : solar wind, magnetosphere, storm, geospace magnetic storms, ionosphere coupling,
Wydawnictwo : Instytut Geofizyki PAN
Rocznik : 2009
Numer : Vol. 57, no. 1
Strony : 141 – 157
Bibliografia : Araujo-Pradere, E.A., T.J. Fuller-Rowell, and M.V. Codrescu (2002a), STORM: an empirical storm-time ionospheric correction model. 1: Model description, Radio Sci. 37, 5, 1070,
Araujo-Pradere, E.A., T.J. Fuller-Rowell, and M.V. Codrescu (2002b), STORM: an empirical storm-time ionospheric correction model. 2: Validation, Radio Sci. 37, 5,
Balasis, G., S. Maus H. Lühr, and M. Rother (2005), Wavelet analysis of CHAMP flux gate magnetometer data. In: C. Reigber, H. Lühr, P. Schwintzer, and J. Wickert (eds.), Earth Observation with CHAMP: Results from Three Years in Orbit, 347-352, Springer, New York,
Balasis, G., I.A. Daglis, P. Kapiris, M. Mandea, D. Vassiliadis, and K. Eftaxias (2006), From prestorm activity to magnetic storms: a transition described in terms of fractal dynamics, Ann. Geophys. 24, 3557-3567.
Belehaki, A., and I. Tsagouri (2002), On the occurrence of storm-induced nighttime ionization enhancements at ionospheric middle latitudes, J. Geophys. Res. 107, A8, 1209,
Boyle, C.B., P.H. Reiff, and M.R. Hairston (1997), Empirical polar cap potentials, J. Geophys. Res. 102, 111-125,
Consolini, G., and P. De Michelis (2002), Fractal time statistics of AE-index burst waiting times: evidence of metastability, Nonlinear Proc. Geoph. 9, 419-423.
Daglis, I.A., and W.I. Axford (1996), Fast ionospheric response to enhanced activity in geospace: Ion feeding of the inner magnetotail, J. Geophys. Res. 101, A3, 5047-5065,
Daglis, I.A., J.U. Kozyra, Y. Kamide, D. Vassiliadis, A.S. Sharma, M.W. Liemohn, W.D. Gonzalez, B.T. Tsurutani, and G. Lu (2003), Intense space storms: Critical issues and open disputes, J. Geophys. Res. 108, A5, 1208,
Daglis, I.A., D. Delcourt, F.-A. Metallinou, and Y. Kamide (2004), Particle acceleration in the frame of the storm-substorm relation, IEEE Trans. Plasma Science 32, 4, 1449-1454,
Delcourt, D.C., J.-A. Sauvaud, and A. Pedersen (1990), Dynamics of single-particle orbits during substorm expansion phase, J. Geophys. Res. 95, 20853-20865.
Fok, M.-C., T.E. Moore, P.C. Brandt, D.C. Delcourt, S.P. Slinker, and J.A. Fedder (2006), Impulsive enhancements of oxygen ions during substorms, J. Geophys. Res. 111, A10222,
Ganushkina, N.Y., T.I. Pulkkinen, and T. Fritz (2005), Role of substorm-associated impulsive electric fields in the ring current development during storms, Ann. Geophys. 23, 579-591.
Ganushkina, N.Y., T.I. Pulkkinen, A. Milillo, and M. Liemohn (2006), Evolution of the proton ring current energy distribution during 21-25 April 2001 storm, J. Geophys. Res. 111, A11SO8,
Janhunen, P. (1996), GUMICS-3: a global ionosphere-magnetosphere coupling simulation with high ionospheric resolution, Proceedings of Environmental Modeling for Space-Based Applications, ESA SP-392.
Kan, J.R., and L.C. Lee (1979), Energy coupling function and solar wind-magnetosphere dynamo, Geophys. Res. Lett. 6, 7, 577-580, I. DAGLIS et al. 156
Korth, A., R.H.W. Friedel, F. Frutos-Alfaro, C.G. Mouikis, and Q. Zong (2002), Ion composition of substorms during storm-time and non-storm-time periods, J. Atmos. Sol.-Terr. Phys. 64, 561-566.
Kutiev, I., and P. Muhtarov (2001), Modeling of midlatitude F region response to geomagnetic activity, J. Geophys. Res. 106, A8, 15501-15509,
Li, X., D.N. Baker, M. Temerin, G.D. Reeves, and R.D. Belian (1998), Simulation of dispersionless injections and drift echoes of energetic electrons associated with substorms, Geophys. Res. Lett. 25, 20, 3763-3766,
Liemohn, M., and J.U. Kozyra (2003), Lognormal form of the ring-current energy content, J. Atmos. Sol.-Terr. Phys. 65, 871-886.
Liemohn, M.W., J.U. Kozyra, and M.F. Thomsen (2001), Dominant role of the asymmetric ring current in producing the stormtime Dst, J. Geophys. Res. 106, A6, 10883-10904,
Mandea, M., and G. Balasis (2006), The SGR 1806-20 magnetar signature on the Earth's magnetic field, Geophys. J. Int. 167, 586-591, (see report
Maynard, N.C., W.J. Burke, E.M. Basinska, G.M. Erickson, W.J. Hughes, H.J. Singer, A.G. Yahnin, D.A. Hardy, and F.S. Mozer (1996), Dynamics of the inner magnetosphere near times of substorm onsets, J. Geophys. Res. 101, A4, 7705-7736,
Mikhailov, A.V., V.H. Depuev, and A.H. Depueva (2007), Short-term foF2 forecast: Present day state of art. In: J. Lilensten (ed.), Space Weather: Research Towards Applications in Europe, Astrophysics and Space Science Library, 344, 169-184, Springer, Dordrecht,
Milillo, A., S. Orsini, and I.A. Daglis (2001), Empirical model of proton fluxes in the equatorial inner magnetosphere: Development, J. Geophys. Res. 106,A11, 25,713-25,729,
Muhtarov, P., I. Kutiev, and L. Cander (2002), Geomagnetically correlated autoregression model for short-term prediction of ionospheric parameters, Inverse Problems 18, 1, 49-65.
Palmroth, M., T.I. Pulkkinen, P. Janhunen, and C.-C. Wu (2003), Storm time energy transfer in global MHD simulation, J. Geophys. Res. 108, A1, 1048
Palmroth, M., P. Janhunen, T.I. Pulkkinen, and H.E.J. Koskinen (2004), Ionospheric energy input as a function of solar wind parameters: Global MHD simulation results, Ann. Geophys. 22, 549-566.
Palmroth, M., P. Janhunen, T.I. Pulkkinen, A. Aksnes, G. Lu, N. Ostgaard, J. Watermann, G.D. Reeves, and G.A. Germany (2005), Assessment of ionospheric Joule heating by GUMICS-4 MHD simulation, AMIE, and satellitebased statistics: Towards a synthesis, Ann. Geophys. 23, 2051-2068.
Palmroth, M., P. Janhunen, G.A. Germany, D. Lummerzheim, K. Liou, D.N. Baker, C. Barth, A.T. Weatherwax, and J. Watermann (2006a), Precipitation and total power consumption in the ionosphere: Global MHD simulation results compared with Polar and SNOE observations, Ann. Geophys. 24, 861-872.
Palmroth, M., T.V. Laitinen, and T.I. Pulkkinen (2006b), Magnetopause energy and mass transfer: Results from a global MHD simulation, Ann. Geophys. 24, 3467-3480.
Palmroth, M., P. Janhunen, and T.I. Pulkkinen (2006c), Hysteresis in solar wind power input to the magnetosphere, Geophys. Res. Lett. 33, L03107,
Proelss, G.W. (1995), Ionospheric F-region storms, Handbook of Atmospheric Electrodynamics, vol. II, 195-248, CRC Press.
Sarris, T.E, X. Li, N. Tsaggas, and N. Paschalidis (2002), Modeling energetic particle injections in dynamic pulse fields with varying propagation speeds, J. Geophys. Res. 107, A3, 1033,
Sitnov, M.I., A.S. Sharma, K. Papadopoulos, and D. Vassiliadis (2001), Modeling substorm dynamics of the magnetosphere: From self-organization and selforganized criticality to nonequilibrium phase transitions, Phys. Rev. E 65, 016116
Stern, D.P. (1975), The motion of a proton in the equatorial magnetosphere, J. Geophys. Res. 80, 595-599,
Tsagouri, I., and A. Belehaki (2006), A new empirical model of middle latitude ionospheric response for space weather applications, Adv. Space Res. 37, 420-425,
Tsagouri, I., and A. Belehaki (2008), An upgrade of the solar wind driven empirical model for the middle latitude ionospheric storm-time response, J. Atmos. Sol.-Terr. Phys. submitted.
Tsagouri, I., A. Belehaki, G. Moraitis, and H. Mavromihalaki (2000), Positive and negative ionospheric disturbances at middle latitudes during geomagnetic storms, Geophys. Res. Lett. 27, 21, 3579-3582,
Tsyganenko, N.A. (1989), A magnetospheric magnetic field model with a warped tail current sheet, Planet. Space Sci. 37, 1, 5-20.
Tu, J.-N., K. Tsuruda, H. Hayakawa, A. Matsuoka, T. Mukai, I. Nagano, and S. Yagitani (2000), Statistical nature of impulsive electric fields associated with fast ion flow in the near-Earth plasma sheet, J. Geophys. Res. 105, 18,901-18,907,
Volland, H. (1973), A semi-empirical model of large-scale magnetospheric electric field, J. Geophys. Res. 78, 171-180,
Cytuj : Lilensten, J. ,Zuccarello, F. ,Zuccarello, F. ,Lundstedt, H. ,Kretzschmar, M. ,Contarino, L. ,Messerotti, M. ,Desorgher, L. ,Usoskin, I. G. ,Dudok de Wit, T. ,Valtonen, E. ,Spurny, F. ,Daglis, I. , Investigating dynamic coupling in geospace through the combined use of modeling, simulations and data analysis. Acta Geophysica Vol. 57, no. 1/2009