Journal : Acta Geophysica
Article : Investigation of the 16-year and 18-year ZTD Time Series Derived from GPS Data Processing

Authors :
Białecki, M.
Institute of Geophysics, Polish Academy of Sciences, Warszawa, Poland, bialecki@igf.edu.pl,
Bevis, M.
School of Earth Sciences, Ohio State University, Columbus, Ohio, USA, mbevis@osu.edu,
Pan, E.
Department of Civil Engineering, University of Akron, Akron, Ohio, USA,
Zhou, H.
School of Earth Sciences, Ohio State University, Columbus, Ohio, USA,
Han, F.
Department of Civil Engineering, University of Akron, Akron, Ohio, USA,
Zhu, R.
Department of Civil Engineering, University of Akron, Akron, Ohio, USA,
Sun, Q.
School of Resources and Geosciences, China University of Mining and Technology, Xuzhou, China, sunqiang04@126.com,
Xue, L.
Key Laboratory of Shale Gas and Geoengineering, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China,
Zhu, S.
School of Resources and Geosciences, China University of Mining and Technology, Xuzhou, China,
Hekmatian, M. E.
Faculty of Basic Sciences of Science and Research Branch, Islamic Azad University, Tehran, Iran; Nuclear Fuel Cycle Research School of Nuclear Science and Technology Research Institute (NSTRI), Tehran, Iran, mhekmatian@aeoi.org.ir,
Ardestani, V. E.
Institute of Geophysics, University of Tehran, Tehran, Iran, ebrahimz@ut.ac.ir,
Riahi, M. A.
Institute of Geophysics, University of Tehran, Tehran, Iran, mariahi@ut.ac.ir,
Bagh, A. M. K.
Nuclear Fuel Cycle Research School of Nuclear Science and Technology Research Institute (NSTRI), Tehran, Iran; Faculty of Engineering of South Tehran Branch, Islamic Azad University, Tehran, Iran, amemar@aeoi.org.ir,
Amini, J.
Faculty of Engineering, University of Tehran, Tehran, Iran, jamini@ut.ac.ir,
Cheng, B.
State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Chengdu University of Technology, Chengdu, China / Key Laboratory of Earth Exploration and Information Technology of Ministry of Education, Chengdu University of Technology, Chengdu, China / Meteorological Information and Signal Processing / Key Laboratory of Sichuan Higher Education Institutes, Chengdu University of Information Technology, Chengdu, China, chengbingjie09@cdut.cn,
Xu, T.
3rd Geophysical Institute, Exploration and Production Institute, Southwest Oil and Gas Company, SINOPEC, Chengdu, China,
Robbins, B.
Fugro Aperio, Fugro Onshore Geotechnics, Wallingford, Oxfordshire, UK,
Shen, Z. M.
State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Chengdu University of Technology, Chengdu, China,
Toushmalani, R.
Department of Computer, Faculty of Engineering, Kangavar Branch, Islamic Azad University, Kangavar, Iran, geoman110@gmail.com,
Saibi, H.
Laboratory of Exploration Geophysics, Department of Earth Resources Engineering, Faculty of Engineering, Kyushu University, Fukuoka, Japan, saibi-hakim@mine.kyushu-u.ac.jp,
Chakravarthini, V.
Centre for Earth and Space Sciences, University of Hyderabad, Hyderabad, India, vcvarthi@rediffmail.com,
Ramamma, B.
Centre for Earth and Space Sciences, University of Hyderabad, Hyderabad, India, ramageophd@gmail.com,
Białoń, W.
Institute of Geophysics, Polish Academy of Sciences, Warszawa, Poland, w.bialon@igf.edu.pl,
Zarzycka, E.
Institute of Geophysics, Polish Academy of Sciences, Warszawa, Poland, ezarzycka@igf.edu.pl,
Lasocki, S.
Institute of Geophysics, Polish Academy of Sciences, Warszawa, Poland, lasocki@igf.edu.pl,
Bose, S. K.
S.N. Bose National Centre for Basic Sciences, Kolkata 700064, India, sujitkbose@yahoo.com,
Bałdysz, Z.
Military University of Technology, Faculty of Civil Engineering and Geodesy, Warszawa, Poland, zbaldysz@wat.edu.pl,
Nykiel, G.
Military University of Technology, Faculty of Civil Engineering and Geodesy, Warszawa, Poland;,
Figurski, M.
Military University of Technology, Faculty of Civil Engineering and Geodesy, Warszawa, Poland;,
Szafranek, K.
Military University of Technology, Faculty of Civil Engineering and Geodesy, Warszawa, Poland;,
Kroszczyński, K.
Military University of Technology, Faculty of Civil Engineering and Geodesy, Warszawa, Poland;,
Abstract : The GPS system can play an important role in activities related to the monitoring of climate. Long time series, coherent strategy, and very high quality of tropospheric parameter Zenith Tropospheric Delay (ZTD) estimated on the basis of GPS data analysis allows to investigate its usefulness for climate research as a direct GPS product. This paper presents results of analysis of 16-year time series derived from EUREF Permanent Network (EPN) reprocessing performed by the Military University of Technology. For 58 stations Lomb-Scargle periodograms were performed in order to obtain information about the oscillations in ZTD time series. Seasonal components and linear trend were estimated using Least Square Estimation (LSE) and Mann-Kendall trend test was used to confirm the presence of a linear trend designated by LSE method. In order to verify the impact of the length of time series on trend value, comparison between 16 and 18 years were performed.

Keywords : GPS, time series, troposphere,
Publishing house : Instytut Geofizyki PAN
Publication date : 2015
Number : Vol. 63, no. 4
Page : 1103 – 1125

Bibliography
: 1 Bengtsson, L., S. Hagemann, and K.I. Hodges (2004), Can climate trends be calculated from reanalysis data? J. Geophys. Res. 109, D11, D1111, DOI: 10.1029/2004JD004536.
2 Bevis, M., S. Businger, T.A. Herring, C. Rocken, R.A. Anthes, and R.H. Ware (1992), GPS meteorology: Remote sensing of atmospheric water vapor us ing the global positioning system, J. Geophys. Res. 97, D14, 15787-15801, DOI: 10.1029/92JD01517.
3 Bock, O., M.-N. Bouin, A. Walpersdorf, J.-P. Lafore, S. Janicot, F. Guichard, and A. Agusti-Panareda (2007), Comparison of ground-based GPS precipitable water vapour to independent observations and numerical weather prediction model reanalyses over Africa, Q. J. Roy. Meteor. Soc. 133, 629, 2011-2027, DOI: 10.1002/qj.185.
4 Bock, O., P. Willis, J. Wang, and C. Mears (2014), A high-quality, homogenized, global, long-term (1993-2008) DORIS precipitable water data set for climate monitoring and model verification, J. Geophys. Res. – Atmos. 119, 12, 7209-7230, DOI: 10.1002/2013JD021124.
5 Bruyninx, C. (2004), The EUREF Permanent Network: a multi-disciplinary network serving surveyors as well as scientists, GeoInformatics 7, 5, 32-35.
6 Byun, S.H., and Y.E. Bar-Server (2009), A new type of troposphere zenith path delay product of the international GNSS service, J. Geodesy 83, 3-4, 367-373, DOI: 10.1007/s00190-008-0288-8.
7 COST (2012), Memorandum of understanding for the implementation of a European Concerted Research Action, COST Action ES1206, Advanced Global Navigation Satellite Systems tropospheric products for monitoring severe weather events and climate (GNSS4SWEC), European Cooperation in Science and Technology.
8 Dach, R., U. Hugentobler, P. Fridez, and M. Meindl (eds.) (2007), Bernese GPS software version 5.0, User manual, Astronomical Institute, University of Bern, Bern, Switzerland.
9 Figurski, M., P. Kamiński, and A. Kenyeres (2009), Preliminary results of the complete EPN reprocessing computed by the MUT EPN Local Analysis Centre, Bull. Geod. Geomatics 1, 163-174.
10 Goosens, C., and A. Berger (1986), Annual and seasonal climatic variations over the northern hemisphere and Europe during the last century, Ann. Geophys. 4, 4, 385-400.
11 Guerova, G. (2013), Ground-based GNSS meteorology, Gfg2 Summer School, 2 July 2013, Potsdam, Germany.
12 Hagemann, S., L. Bengtsson, and G. Gendt (2003), On the determination of atmospheric water vapor from GPS measurements, J. Geophys. Res. 108, D21, 4678, DOI: 10.1029/2002JD003235.
13 Held, I.M., and B.J. Soden (2006), Robust responses of the hydrological cycle to global warming, J. Climate 19, 21, 5686-5699, DOI: 10.1175/JCLI3990.1.
14 Herring, T.A. (1992), Modeling atmospheric delays in the analysis of space geodetic data. In: J.C. de Munck, and T.A.T. Spoelstra (eds.), Proc. Symp. Refraction of Transatmospheric Signals in Geodesy, 19-22 May 1992, Hague, The Netherlands, 157-164. Hocke, K. (1998), Phase estimation with Lomb-Scargle periodogram method, Ann.Geophys. 16, 3, 356-358.
15 Jin, S., J.-U. Park, J.-H. Cho, and P.-H. Park (2007), Seasonal variability of GPSderived zenith tropospheric delay (1994-2006) and climate implications, J. Geophys. Res. 112, D9, D09110, DOI: 10.1029/2006JD007772.
16 Karmeshu, N. (2012), Trend detection in annual temperature and precipitation using Mann Kendall test – A case study to assess climate change on select states in the Northeastern United States, M.Sc. Thesis, University of Pennsylvania, Philadelphia, USA.
17 Kendall, M.G., and A. Stuart (1970), The Advanced Theory of Statistics. Vol. 2: Interference and Relationship, 3rd ed., Hafner, New York.
18 Lomb, N.R. (1976), Least-squares frequency analysis of unequally spaced data, Astrophys. Space Sci. 39, 2, 447-462, DOI: 10.1007/BF006483.
19 Mann, H.B. (1945), Nonparametric tests against trend, Econometrica 13, 3, 245-259, DOI: 10.2307/1907187.
20 Marini, J.W. (1972), Correction of satellite tracking data for an arbitrary tropospheric profile, Radio Sci. 7, 2, 223-231, DOI: 10.1029/RS007i002p00223.
21 Mavromatis, T., and D. Stathis (2011), Response of the water balance in Greece to temperature and precipitation trends, Theor. Appl. Climatol. 104, 1-2, 13-24, DOI: 10.1007/s00704-010-0320-9.
22 Niell, A.E. (1996), Global mapping functions for the atmospheric delay at radio wavelengths, J. Geophys. Res. 101, B2, 3227-3246, DOI: 10.1029/ 95JB03048.
23 Nilsson, T., and G. Elgered (2008), Long-term trends in the atmospheric water vapor content estimated from ground-based GPS data, J. Geophys. Res. 113, D19, D19101, DOI: 10.1029/2008JD010110.
24 Ning, T. (2012), GPS meteorology: with focus on climate application, Ph.D. Thesis, Department of Earth and Space Sciences, Chalmers University of Technology, Göteborg, Sweden.
25 Pacione, R., B. Pace, and G. Bianco (2014), An homogeneously reprocessed Zenith Total Delay long-term time series over Europe. In: EGU General Assembly, 27 April – 2 May 2014, Vienna, Austria, id. 2945. Press, W.H., S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery (1992), Numerical recipes in Fortran, 2nd ed., Cambridge University Press, Cambridge.
26 Ross, R.J., and W.P. Elliott (2001), Radiosonde-based northern hemisphere tropospheric water vapor trends, J. Climate 14, 7, 1602-1612, DOI: 10.1175/ 1520-0442(2001)014<1602:RBNHTW>2.0.CO;2.
27 Schüler, T. (2001), On ground-based GPS tropospheric delay estimation, Ph.D. Thesis, Universität der Bundeswehr, München, Germany, 364 pp.
28 Söhne, W., M. Figurski, and K. Szafranek (2010), Homogeneous Zenith Total Delay parameter estimation from European permanent GNSS sites, Bull. Geod. Geomatics 69, 1, 11-22. Steigenberger, P., M. Rothacher, R. Dietrich, M. Fritsche, A. Rülke, and S. Vey (2006), Reprocessing of a global GPS network, J. Geophys. Res. 111, B5, B05402, DOI: 10.1029/2005JB003747. van Malderen, R., H. Brenot, E. Pottiaux, S. Beirle, C. Hermans, M. de Mazière, T. Wagner, H. de Backer, and C. Bruyninx (2014), A multi-site intercomparison of integrated water vapour observations for climate change analysis, Atmos. Meas. Tech. 7, 8, 2487-2512, DOI: 10.5194/amt-7-2487-2014.
29 Wang, J., and L. Zhang (2009), Climate applications of a global, 2-hourly atmospheric precipitable water dataset derived from IGS tropospheric products, J. Geodesy 83, 3-4, 209-217, DOI: 10.1007/s00190-008-0238-5.
30 Yong, W., Y. Binyun, W. Debao, and L. Yanping (2008), Zenith Tropospheric Delay from GPS monitoring climate change of Chinese Mainland. In: Int. Workshop on Education Technology and Training and on Geoscience and Remote Sensing, 21-22 December 2008, Shanghai, China, Vol. 1, 365-368, DOI: 10.1109/ETTandGRS.2008.43.
DOI :
Qute : Białecki, M. ,Bevis, M. ,Pan, E. ,Zhou, H. ,Han, F. ,Zhu, R. ,Sun, Q. ,Xue, L. ,Zhu, S. ,Hekmatian, M. E. ,Ardestani, V. E. ,Riahi, M. A. ,Bagh, A. M. K. ,Amini, J. ,Cheng, B. ,Xu, T. ,Robbins, B. ,Shen, Z. M. ,Toushmalani, R. ,Saibi, H. ,Chakravarthini, V. ,Ramamma, B. ,Białoń, W. ,Zarzycka, E. ,Lasocki, S. ,Bose, S. K. ,Bałdysz, Z. ,Nykiel, G. ,Figurski, M. ,Szafranek, K. ,Kroszczyński, K. ,Kroszczyński, K. , Investigation of the 16-year and 18-year ZTD Time Series Derived from GPS Data Processing. Acta Geophysica Vol. 63, no. 4/2015
facebook