Ionospheric and Solar Wind Variation during Magnetic Storm Onset and Main Phase at Low- and Mid-latitudes

Czasopismo : Acta Geophysica
Tytuł artykułu : Ionospheric and Solar Wind Variation during Magnetic Storm Onset and Main Phase at Low- and Mid-latitudes

Autorzy :
Białecki, M.
Institute of Geophysics, Polish Academy of Sciences, Warszawa, Poland, bialecki@igf.edu.pl,
Bevis, M.
School of Earth Sciences, Ohio State University, Columbus, Ohio, USA, mbevis@osu.edu,
Pan, E.
Department of Civil Engineering, University of Akron, Akron, Ohio, USA,
Zhou, H.
School of Earth Sciences, Ohio State University, Columbus, Ohio, USA,
Han, F.
Department of Civil Engineering, University of Akron, Akron, Ohio, USA,
Zhu, R.
Department of Civil Engineering, University of Akron, Akron, Ohio, USA,
Sun, Q.
School of Resources and Geosciences, China University of Mining and Technology, Xuzhou, China, sunqiang04@126.com,
Xue, L.
Key Laboratory of Shale Gas and Geoengineering, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China,
Zhu, S.
School of Resources and Geosciences, China University of Mining and Technology, Xuzhou, China,
Hekmatian, M. E.
Faculty of Basic Sciences of Science and Research Branch, Islamic Azad University, Tehran, Iran; Nuclear Fuel Cycle Research School of Nuclear Science and Technology Research Institute (NSTRI), Tehran, Iran, mhekmatian@aeoi.org.ir,
Ardestani, V. E.
Institute of Geophysics, University of Tehran, Tehran, Iran, ebrahimz@ut.ac.ir,
Riahi, M. A.
Institute of Geophysics, University of Tehran, Tehran, Iran, mariahi@ut.ac.ir,
Bagh, A. M. K.
Nuclear Fuel Cycle Research School of Nuclear Science and Technology Research Institute (NSTRI), Tehran, Iran; Faculty of Engineering of South Tehran Branch, Islamic Azad University, Tehran, Iran, amemar@aeoi.org.ir,
Amini, J.
Faculty of Engineering, University of Tehran, Tehran, Iran, jamini@ut.ac.ir,
Cheng, B.
State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Chengdu University of Technology, Chengdu, China / Key Laboratory of Earth Exploration and Information Technology of Ministry of Education, Chengdu University of Technology, Chengdu, China / Meteorological Information and Signal Processing / Key Laboratory of Sichuan Higher Education Institutes, Chengdu University of Information Technology, Chengdu, China, chengbingjie09@cdut.cn,
Xu, T.
3rd Geophysical Institute, Exploration and Production Institute, Southwest Oil and Gas Company, SINOPEC, Chengdu, China,
Robbins, B.
Fugro Aperio, Fugro Onshore Geotechnics, Wallingford, Oxfordshire, UK,
Shen, Z. M.
State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Chengdu University of Technology, Chengdu, China,
Toushmalani, R.
Department of Computer, Faculty of Engineering, Kangavar Branch, Islamic Azad University, Kangavar, Iran, geoman110@gmail.com,
Saibi, H.
Laboratory of Exploration Geophysics, Department of Earth Resources Engineering, Faculty of Engineering, Kyushu University, Fukuoka, Japan, saibi-hakim@mine.kyushu-u.ac.jp,
Chakravarthini, V.
Centre for Earth and Space Sciences, University of Hyderabad, Hyderabad, India, vcvarthi@rediffmail.com,
Ramamma, B.
Centre for Earth and Space Sciences, University of Hyderabad, Hyderabad, India, ramageophd@gmail.com,
Białoń, W.
Institute of Geophysics, Polish Academy of Sciences, Warszawa, Poland, w.bialon@igf.edu.pl,
Zarzycka, E.
Institute of Geophysics, Polish Academy of Sciences, Warszawa, Poland, ezarzycka@igf.edu.pl,
Lasocki, S.
Institute of Geophysics, Polish Academy of Sciences, Warszawa, Poland, lasocki@igf.edu.pl,
Bose, S. K.
S.N. Bose National Centre for Basic Sciences, Kolkata 700064, India, sujitkbose@yahoo.com,
Bałdysz, Z.
Military University of Technology, Faculty of Civil Engineering and Geodesy, Warszawa, Poland, zbaldysz@wat.edu.pl,
Nykiel, G.
Military University of Technology, Faculty of Civil Engineering and Geodesy, Warszawa, Poland;,
Figurski, M.
Military University of Technology, Faculty of Civil Engineering and Geodesy, Warszawa, Poland;,
Szafranek, K.
Military University of Technology, Faculty of Civil Engineering and Geodesy, Warszawa, Poland;,
Kroszczyński, K.
Military University of Technology, Faculty of Civil Engineering and Geodesy, Warszawa, Poland;,
Kroszczyński, K.
Military University of Technology, Faculty of Civil Engineering and Geodesy, Warszawa, Poland, kkroszczynski@wat.edu.pl,
Adekoya, B. J.
Department of Physics, Olabisi Onabanjo University, Ago Iwoye, Nigeria, adekoya.bolarinwa@oouagoiwoye.edu.ng,
Adebesin, B. O.
Department of Physical Sciences, Landmark University, Omu-Aran, Nigeria, f_adebesin@yahoo.co.uk,
Abstrakty : The relationship between the F2-layer critical frequency and solar wind parameters during magnetic storm sudden commencement (SSC) and main phase periods for intense (IS) and very intense (VIS) class of storms is investigated. The analysis covers low- and mid-latitude stations. The effects of ionospheric storm during SSC period is insignificant compared to the main phase, but can trigger the latter. The main phase is characterized by severe negative storm effect at both latitudes during VIS periods while it is latitudinal symmetric for IS observations. The IS reveal positive/negative storm phase in the low-/mid-latitudes, respectively. Ionization density effect is more prominent during VIS events, and is attributed to large energetic particle and solar activity input into the earth magnetosphere. However, ionospheric effect is more significant at the low-latitude than at the mid-latitude. Lastly, ionospheric storm effect during a geomagnetic storm may be related to the combinational effect of interplanetary and geomagnetic parameters and internal ionospheric effect, not necessarily the solar wind alone.

Słowa kluczowe : F2 layer critical frequency, very intense storm, intense storm, driver gas, ionization density,
Wydawnictwo : Instytut Geofizyki PAN
Rocznik : 2015
Numer : Vol. 63, no. 4
Strony : 1150 – 1180
Bibliografia : 1 Adebesin, B.O. (2008), Roles of interplanetary and geomagnetic parameters in “intense” and “very intense” magnetic storms generation and their geoeffectiveness, Acta Geod. Geoph. Hung. 43, 4, 383-408, DOI: 10.1556/ AGeod. 43.2008.4.2.
2 Adebesin, B.O., and V.U. Chukwuma (2008), On the variation between Dst and IMF Bz during “intense” and “very intense” geomagnetic storms, Acta Geod.Geoph. Hung. 43, 1, 1-15, DOI: 10.1556/AGeod.43.2008.1.1.
3 Adebesin, B.O., and J.S. Kayode (2012), On the coexistence of ionospheric positive and negative storm phases during January-December, 2000 geomagnetic activities at East Asian Sector, Adv. Appl. Sci. Res. 3, 1, 349-370.
4 Adebesin, B.O., S.O. Ikubanni, S.J. Adebiyi, and B.W. Joshua (2013), Multi-station observation of ionospheric disturbance of March 9, 2012 and comparison with IRI-model, Adv. Space Res. 52, 4, 604-613, DOI: 10.1016/j.asr.2013. 05.002.
5 Adebiyi, S.J., I.A. Adimula, O.A. Oladipo, B.W. Joshua, B.O. Adebesin, and S.O. Ikubanni (2014), Ionospheric response to magnetic activity at low and mid-latitude stations, Acta Geophys. 62, 4, 973-989, DOI: 10.2478/s11600-014-0205-x.
6 Adekoya, B.J., and B.O. Adebesin (2014), Hemispheric, seasonal and latitudinal dependence of storm-time ionosphere during low solar activity period, Adv. Space Res. 54, 11, 2184-2193, DOI: 10.1016/j.asr.2014.08.013.
7 Adekoya, B.J., V.U. Chukwuma, N.O. Bakare, and T.W. David (2012a), On the effects of geomagnetic storms and pre storm phenomena on low and middle latitude ionospheric F2, Astrophys. Space Sci. 340, 2, 217-235, DOI: 10.1007/s10509-012-1082-x.
8 Adekoya, B.J., V.U. Chukwuma, N.O. Bakare, and T.W. David (2012b), Effects of geomagnetic storm on middle latitude ionospheric F2 during storm of 2-6 April 2004, Indian J. Rad. Space Phys. 41, 6, 606-616.
9 Adekoya, B.J., V.U. Chukwuma, and S.A. Salako (2013), On the coexistence of positive and negative ionospheric storm during geomagnetic storms and pre storm phenomena on low and low-mid latitude ionospheric F2. In: Proc. 5th Nat. Ann. Conf. Nigerian Union of Radio Science (NURS), 15-28.
10 Adeniyi, J.O. (1986), Magnetic storm effects on the morphology of the equatorial F2-layer, J. Atmos. Sol.-Terr. Phys. 48, 8, 695-702, DOI: 10.1016/0021-9169(86)90019-X.
11 Akala, A.O., E.O. Oyeyemi, E.O. Somoye, A.B. Adeloye, and A.O. Adewale (2010), Variability of foF2 in the African equatorial ionosphere, Adv. Space Res. 45, 11, 1311-1314, DOI: 10.1016/j.asr.2010.01.003.
12 Bakare, N.O., and V.U. Chukwuma (2010), Relationship between Dst and solar wind conditions during intense geomagnetic storms, Indian J. Rad. Space Phys. 39, 3, 150-155.
13 Balan, N., K. Shiokawa, Y. Otsuka, T. Kikuchi, D. Vijaya Lekshmi, S. Kawamura, M. Yamamoto, and G.J. Bailey (2010), A physical mechanism of positive ionospheric storms at low latitudes and mid latitudes, J. Geophys. Res. 115, A2, A02304, DOI: 10.1029/2009JA014515.
14 Balasis, G., I.A. Daglis, P. Kapiris, M. Mandea, D. Vassiliadis, and K. Eftaxias (2006), From pre-storm activity to magnetic storms: a transition described in terms of fractal dynamics, Ann. Geophys. 24, 3557-3567, DOI: 10.5194/ angeo-24-3557-2006.
15 Blagoveshchensky, D.V., and A.S. Kalishin (2009), Increase in the critical frequency of the ionospheric F region prior to the substorm expansion phase, Geomagn. Aeron. 49, 2, 200-209, DOI: 10.1134/S0016793209020091.
16 Buonsanto, M.J. (1999), Ionospheric storms – A review, Space Sci. Rev. 88, 3-4, 563-601, DOI: 10.1023/A:1005107532631.
17 Burešová, D., and J. Laštovička (2007), Pre-storm enhancements of foF2 above Europe, Adv. Space Res. 39, 8, 1298-1303, DOI: 10.1016/j.asr.2007.03.003.
18 Burešová, D., and J. Laštovička (2008), Pre-storm electron density enhancements at middle latitudes, J. Atmos. Sol.-Terr. Phys. 70, 15, 1848-1855, DOI: 10.1016/j.jastp.2008.01.014.
19 Choe, G.S., N. LaBelle-Hamer, B.T. Tsurutani, and L.C. Lee (1992), Identification of a driver gas boundary layer, EOS Trans. AGU 73, 485.
20 Chukwuma, V.U. (2007), On positive and negative ionospheric storms, Acta Geod. Geoph. Hung. 42, 1, 1-21, DOI: 10.1556/AGeod.42.2007.1.1.
21 Dal-Lago, A., L.E.A. Vieira, E. Echer, W.D. Gonzalez, A.L. Clúa de Gonzalez, F.L. Guarnieri, L. Balmaceda, J. Santos, M.R. da Silva, A. de Lucas, and N.J. Schuch (2004), Great geomagnetic storms in the rise and maximum of solar cycle 23, Braz. J. Phys. 34, 4B, 1542-1546, DOI: 10.1590/S0103-97332004000800008.
22 Danilov, A.D. (2001), F2-region response to geomagnetic disturbances, J. Atmos. Sol.-Terr. Phys. 63, 5, 441-449, DOI: 10.1016/s1364-6826(00)00175-9. Danilov, A.D. (2013), Ionospheric F-region response to geomagnetic disturbances, Adv. Space Res. 52, 3, 343-366, DOI: 10.1016/j.asr.2013.04.019.
23 Davis, C.J., M.N. Wild, M. Lockwood, and Y.K. Tulunay (1997), Ionospheric and geomagnetic responses to changes in IMF Bz: a superposed epoch study, Ann. Geophys. 15, 2, 217-230, DOI: 10.1007/s00585-997-0217-9.
24 Echer, E., M.V. Alves, and W.D. Gonzalez (2005), A statistical study of magnetic cloud parameters and geoeffectiveness, J. Atmos. Sol.-Terr. Phys. 67, 10, 839-852, DOI: 10.1016/j.jastp.2005.02.010.
25 Fejer, B.G. (1997), The electrodynamics of the low-latitude ionosphere: Recent results and future challenges, J. Atmos. Sol.-Terr. Phys. 59, 13, 1465-1482, DOI: 10.1016/S1364-6826(96)00149-6.
26 Foster, J.C., and F.J. Rich (1998), Prompt midlatitude electric field effects during severe geomagnetic storms, J. Geophys. Res. 103, A11, 26367-26372, DOI: 10.1029/97JA03057.
27 Gonzalez, W.D., and B.T. Tsurutani (1987), Criteria of interplanetary parameters causing intense magnetic storms (Dst < -100 nT), Planet. Space Sci. 35, 9, 1101-1109, DOI: 10.1016/0032-0633(87)90015-8.
28 Gonzalez, W.D., J.A. Joselyn, Y. Kamide, H.W. Kroehl, G. Rostoker, B.T. Tsurutani, and V.M. Vasyliunas (1994), What is a geomagnetic storm?, J. Geophys. Res. 99, A4, 5771-5792, DOI: 10.1029/93JA02867.
29 Gonzalez, W.D., B.T. Tsurutani, and A.L. Clúa de Gonzalez (1999), Interplanetary origin of geomagnetic storms, Space Sci. Rev. 88, 3-4, 529-562, DOI: 10.1023/A:1005160129098.
30 Gonzalez, W.D., B.T. Tsurutani, R.P. Lepping, and R. Schwenn (2002), Interplanetary phenomena associated with very intense geomagnetic storms, J. Atmos. Sol.-Terr. Phys. 64, 2, 173-181, DOI: 10.1016/S1364-6826(01)00082-7.
31 Gonzalez, W.D., E. Echer, A.L. Clua-Gonzalez, and B.T. Tsurutani (2007), Interplanetary origin of intense geomagnetic storms (Dst < -100 nT) during solar cycle 23, Geophys. Res. Lett. 34, 6, L06101, DOI: 10.1029/2006 GL028879.
32 Kamide, Y., N. Yokoyama, W. Gonzalez, B.T. Tsurutani, I.A. Daglis, A. Brekke, and S. Masuda (1998), Two-step development of geomagnetic storms, J. Geophys. Res. 103, A4, 6917-6921, DOI: 10.1029/97JA03337.
33 Kane, R.P. (1975), Global evolution of the ionospheric electron content during some geomagnetic storms, J. Atmos.-Terr. Phys. 37, 4, 601-611, DOI: 10.1016/ 0021-9169(75)90055-0.
34 Kane, R.P. (2005), Ionospheric foF2 anomalies during some intense geomagnetic storms, Ann. Geophys. 23, 2487-2499, DOI: 10.5194/angeo-23-2487-2005.
35 Liu, J., B. Zhao, and L. Liu (2010), Time delay and duration of ionospheric total electron content responses to geomagnetic disturbances, Ann. Geophys. 28, 3, 795-805, DOI: 10.5194/angeo-28-795-2010. Liu, L., W. Wan, M.-L. Zhang, and B. Zhao (2008), Case study on total electron content enhancements at low latitudes during low geomagnetic activities before the storms, Ann. Geophys. 26, 4, 893-903, DOI: 10.5194/angeo-26-893-2008.
36 Mikhailov, A.V., and L. Perrone (2009), Pre-storm NmF2 enhancements at middle latitudes: delusion or reality? Ann. Geophys. 27, 3, 1321-1330, DOI: 10.5194/angeo-27-1321-2009.
37 Mikhailov, A.V., M.G. Skoblin, and M. Förster (1995), Daytime F2-layer positive storm effect at middle and lower latitudes, Ann. Geophys. 13, 5, 532-540, DOI: 10.1007/s00585-995-0532-y.
38 Prölss, G.W. (1993), On explaining the local time variation of ionospheric storm effects, Ann. Geophys. 11, 1, 1-9.
39 Prölss, G.W. (1995), Ionospheric F-region storms. In: H. Volland (ed.), Handbook of Atmospheric Electrodynamics, Vol. 2, CRC Press, Boca Raton, 195-248.
40 Saranya, P.L., K. Venkatesh, D.S.V.V.D. Prasad, P.V.S. Rama Rao, and K. Niranjan (2011), Pre-storm behaviour of NmF2 and TEC (GPS) over equatorial and low latitude stations in the Indian sector, Adv. Space Res. 48, 2, 207-217, DOI: 10.1016/j.asr.2011.03.028.
41 Sutton, E.K., J.M. Forbes, R.S. Nerem, and T.N. Woods (2006), Neutral density response to the solar flares of October and November 2003, Geophys. Res. Lett. 33, 22, L22101, DOI: 10.1029/2006GL027737.
42 Vieira, L.E.A., W.D. Gonzalez, A.L. Clua de Gonzalez, and A. Dal Lago (2001), A study of magnetic storms development in two or more steps and its association with the polarity of magnetic clouds, J. Atmos. Sol.-Terr. Phys. 63, 5, 457-461, DOI: 10.1016/S1364-6826(00)00165-6.
43 Vijaya Lekshmi, D., N. Balan, S. Tulasi Ram, and J.Y. Liu (2011), Statistics of geomagnetic storms and ionospheric storms at low and mid latitudes in two solar cycles, J. Geophys. Res. 116, A11, A11328, DOI: 10.1029/ 2011JA017042.
44 Wang, C.B., J. K. Chao, and C.H. Lin (2003), Influence of the solar wind dynamic pressure on the decay and injection of the ring current, J. Geophys. Res. 108, A9, 1341, DOI: 10.1029/2003JA009851.
DOI :
Cytuj : Białecki, M. ,Bevis, M. ,Pan, E. ,Zhou, H. ,Han, F. ,Zhu, R. ,Sun, Q. ,Xue, L. ,Zhu, S. ,Hekmatian, M. E. ,Ardestani, V. E. ,Riahi, M. A. ,Bagh, A. M. K. ,Amini, J. ,Cheng, B. ,Xu, T. ,Robbins, B. ,Shen, Z. M. ,Toushmalani, R. ,Saibi, H. ,Chakravarthini, V. ,Ramamma, B. ,Białoń, W. ,Zarzycka, E. ,Lasocki, S. ,Bose, S. K. ,Bałdysz, Z. ,Nykiel, G. ,Figurski, M. ,Szafranek, K. ,Kroszczyński, K. ,Kroszczyński, K. ,Adekoya, B. J. ,Adebesin, B. O. , Ionospheric and Solar Wind Variation during Magnetic Storm Onset and Main Phase at Low- and Mid-latitudes. Acta Geophysica Vol. 63, no. 4/2015
facebook