LAGEOS Sensitivity to Ocean Tides

Czasopismo : Acta Geophysica
Tytuł artykułu : LAGEOS Sensitivity to Ocean Tides

Autorzy :
Białecki, M.
Institute of Geophysics, Polish Academy of Sciences, Warszawa, Poland, bialecki@igf.edu.pl,
Bevis, M.
School of Earth Sciences, Ohio State University, Columbus, Ohio, USA, mbevis@osu.edu,
Pan, E.
Department of Civil Engineering, University of Akron, Akron, Ohio, USA,
Zhou, H.
School of Earth Sciences, Ohio State University, Columbus, Ohio, USA,
Han, F.
Department of Civil Engineering, University of Akron, Akron, Ohio, USA,
Zhu, R.
Department of Civil Engineering, University of Akron, Akron, Ohio, USA,
Sun, Q.
School of Resources and Geosciences, China University of Mining and Technology, Xuzhou, China, sunqiang04@126.com,
Xue, L.
Key Laboratory of Shale Gas and Geoengineering, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China,
Zhu, S.
School of Resources and Geosciences, China University of Mining and Technology, Xuzhou, China,
Hekmatian, M. E.
Faculty of Basic Sciences of Science and Research Branch, Islamic Azad University, Tehran, Iran; Nuclear Fuel Cycle Research School of Nuclear Science and Technology Research Institute (NSTRI), Tehran, Iran, mhekmatian@aeoi.org.ir,
Ardestani, V. E.
Institute of Geophysics, University of Tehran, Tehran, Iran, ebrahimz@ut.ac.ir,
Riahi, M. A.
Institute of Geophysics, University of Tehran, Tehran, Iran, mariahi@ut.ac.ir,
Bagh, A. M. K.
Nuclear Fuel Cycle Research School of Nuclear Science and Technology Research Institute (NSTRI), Tehran, Iran; Faculty of Engineering of South Tehran Branch, Islamic Azad University, Tehran, Iran, amemar@aeoi.org.ir,
Amini, J.
Faculty of Engineering, University of Tehran, Tehran, Iran, jamini@ut.ac.ir,
Cheng, B.
State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Chengdu University of Technology, Chengdu, China / Key Laboratory of Earth Exploration and Information Technology of Ministry of Education, Chengdu University of Technology, Chengdu, China / Meteorological Information and Signal Processing / Key Laboratory of Sichuan Higher Education Institutes, Chengdu University of Information Technology, Chengdu, China, chengbingjie09@cdut.cn,
Xu, T.
3rd Geophysical Institute, Exploration and Production Institute, Southwest Oil and Gas Company, SINOPEC, Chengdu, China,
Robbins, B.
Fugro Aperio, Fugro Onshore Geotechnics, Wallingford, Oxfordshire, UK,
Shen, Z. M.
State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Chengdu University of Technology, Chengdu, China,
Toushmalani, R.
Department of Computer, Faculty of Engineering, Kangavar Branch, Islamic Azad University, Kangavar, Iran, geoman110@gmail.com,
Saibi, H.
Laboratory of Exploration Geophysics, Department of Earth Resources Engineering, Faculty of Engineering, Kyushu University, Fukuoka, Japan, saibi-hakim@mine.kyushu-u.ac.jp,
Chakravarthini, V.
Centre for Earth and Space Sciences, University of Hyderabad, Hyderabad, India, vcvarthi@rediffmail.com,
Ramamma, B.
Centre for Earth and Space Sciences, University of Hyderabad, Hyderabad, India, ramageophd@gmail.com,
Białoń, W.
Institute of Geophysics, Polish Academy of Sciences, Warszawa, Poland, w.bialon@igf.edu.pl,
Zarzycka, E.
Institute of Geophysics, Polish Academy of Sciences, Warszawa, Poland, ezarzycka@igf.edu.pl,
Lasocki, S.
Institute of Geophysics, Polish Academy of Sciences, Warszawa, Poland, lasocki@igf.edu.pl,
Bose, S. K.
S.N. Bose National Centre for Basic Sciences, Kolkata 700064, India, sujitkbose@yahoo.com,
Bałdysz, Z.
Military University of Technology, Faculty of Civil Engineering and Geodesy, Warszawa, Poland, zbaldysz@wat.edu.pl,
Nykiel, G.
Military University of Technology, Faculty of Civil Engineering and Geodesy, Warszawa, Poland;,
Figurski, M.
Military University of Technology, Faculty of Civil Engineering and Geodesy, Warszawa, Poland;,
Szafranek, K.
Military University of Technology, Faculty of Civil Engineering and Geodesy, Warszawa, Poland;,
Kroszczyński, K.
Military University of Technology, Faculty of Civil Engineering and Geodesy, Warszawa, Poland;,
Kroszczyński, K.
Military University of Technology, Faculty of Civil Engineering and Geodesy, Warszawa, Poland, kkroszczynski@wat.edu.pl,
Adekoya, B. J.
Department of Physics, Olabisi Onabanjo University, Ago Iwoye, Nigeria, adekoya.bolarinwa@oouagoiwoye.edu.ng,
Adebesin, B. O.
Department of Physical Sciences, Landmark University, Omu-Aran, Nigeria, f_adebesin@yahoo.co.uk,
Sośnica, K.
Astronomical Institute, University of Bern, Canton Bern, Switzerland / Institute of Geodesy and Geoinformatics, Wrocław University of Environmental and Life Sciences, Wrocław, Poland, krzysztof.sosnica@aiub.unibe.ch ; krzysztof.sosnica@igig.up.wroc.pl,
Abstrakty : Satellite Laser Ranging (SLR) to LAGEOS has a remarkable contribution to high-precise geodesy and geodynamics through deriving and validating various global geophysical models. This paper validates ocean tide models based on the analysis of satellite altimetry data, coastal tide gauges, and hydrodynamic data, i.e., CSR3.0, TOPEX4.0, CSR4.0A, FES2004, GOT00.2, and the CSRC Schwiderski model. LAGEOS orbits and SLR observation residuals from solutions based on different ocean tide models are compared and examined. It is found that LAGEOS orbits are sensitive to tidal waves larger than 5 mm. The analysis of the aliasing periods of LAGEOS orbits and tidal waves reveals that, in particular, the tidal constituent S2 is not well established in the recent ocean tide models. Some of the models introduce spurious peaks to empirical orbit parameters, which can be associated with S2, Sa, and K2 tidal constituents, and, as a consequence, can be propagated to fundamental parameters derived from LAGEOS observations.

Słowa kluczowe : satellite geodesy, ocean tides, LAGEOS, orbit determination,
Wydawnictwo : Instytut Geofizyki PAN
Rocznik : 2015
Numer : Vol. 63, no. 4
Strony : 1181 – 1203
Bibliografia : 1 Altamimi, Z., X. Collilieux, and L. Métivier (2011), ITRF2008: an improved solution of the international terrestrial reference frame, J. Geod. 85, 8, 457-473, DOI: 10.1007/s00190-011-0444-4.
2 Beutler, G. (2005), Methods of Celestial Mechanics, Springer, Berlin Heidelberg.
3 Bianco, G., R. Devoti, M. Fermi, V. Luceri, P. Rutigliano, and C. Sciarretta (1998), Estimation of low degree geopotential coefficients using SLR data, Planet.Space Sci. 46, 11-12, 1633-1638, DOI: 10.1016/S0032-0633(97)00215-8.
4 Bizouard, C., and D. Gambis (2014), The combined solution C04 for Earth Orientation Parameters consistent with International Terrestrial Reference Frame 2008, IERS Earth Orientation Product Centre, Paris, France.
5 Chen, J.L., C.R. Wilson, and K.W. Seo (2009), S2 tide aliasing in GRACE timevariable gravity solutions, J. Geod. 83, 7, 679-687, DOI: 10.1007/s00190-008-0282-1.
6 Cheng, M.K., C.K. Shum, and B.D. Tapley (1997), Determination of long-term changes in the Earth’s gravity field from satellite laser ranging observations, J. Geophys. Res. 102, B10, 22377-22390, DOI: 10.1029/97JB01740.
7 Dach, R., U. Hugentobler, P. Fridez, and M. Meindl (2007), Bernese GPS software version 5.0, Astronomical Institute, University of Bern, Bern, Switzerland.
8 Dow, J.M. (1990), Ocean tides and tectonic plate motions in high precision orbit determination, Adv. Space Res. 10, 3-4, 229-238, DOI: 10.1016/0273-1177(90)90353-2.
9 Eanes, R.J. (2004), CSR4.0A global ocean tide model, Center for Space Research, University of Texas, Austin, USA, ftp://ftp.csr.utexas.edu/pub/tide.
10 Eanes, R.J., and S. Bettadpur (1996), The CSR 3.0 global ocean tide model: Diurnal and semi-diurnal ocean tides from TOPEX/POSEIDON altimetry, Technical Report CRS-TM-96-05, Center for Space Research, University of Texas, Austin, USA.
11 Egbert, G.D., and. S.Y. Erofeeva (2002), Efficient inverse modeling of barotropic ocean tides, J. Atmos. Oceanic Technol. 19, 2, 183-204, DOI: 10.1175/ 1520-0426(2002)019<0183:EIMOBO>2.0.CO;2.
12 Egbert, G.D., A.F. Bennett, and M.G.G. Foreman (1994), TOPEX/POSEIDON tides estimated using a global inverse model, J. Geophys. Res. 99, C12, 24821-24852, DOI: 10.1029/94JC01894.
13 Folkner, W.M., P. Charlot, M.H. Finger, J.G. Williams, O.J. Sovers, X.X. Newhall, and E.M. Standish Jr. (1994), Determination of the extragalactic-planetary frame tie from joint analysis of radio interferometric and lunar laser ranging measurements, Astron. Astrophys. 287, 1, 279-289.
14 Iorio, L. (2001), Earth tides and Lense-Thirring effect, Celest. Mech. Dyn. Astr. 79, 3, 201-230, DOI: 10.1023/A:1017963306722.
15 Kolaczek, B., H. Schuh, and D. Gambis (eds.) (2000), High frequency to subseasonal variations in Earth Rotation, IERS Technical Note No. 28, Paris: Central Bureau of IERS – Observatoire de Paris, 91 pp.
16 Lejba, P., and S. Schillak (2011), Determination of station positions and velocities from laser ranging observations to Ajisai, Starlette and Stella satellites, Adv. Space Res. 47, 4, 654-662, DOI: 10.1016/j.asr.2010.10.013.
17 Lemoine, J.M., R. Biancale, and G. Bourda (2004), Processing 18.6 years of Lageos data. In: Proc. 14th Int. Laser Ranging Workshop, 7-11 June 2004, San Fernando, Spain. Lyard, F., F. Lefevre, T. Letellier, and O. Francis (2006), Modelling the global ocean tides: modern insights from FES2004, Ocean Dynam. 56, 5-6, 394-415, DOI: 10.1007/s10236-006-0086-x.
18 Maier, A., S. Krauss, W. Hausleitner, and O. Baur (2012), Contribution of satellite laser ranging to combined gravity field models, Adv. Space Res. 49, 3, 556-565, DOI: 10.1016/j.asr.2011.10.026.
19 McCarthy, D.D., and G. Petit (2004), IERS Conventions 2003, IERS Technical Note No. 32, Verlag des Bundesamts für Kartographie und Geodäsie, Frankfurt am Main, Germany, 127 pp.
20 Mendes, V.B., and E.C. Pavlis (2004), High-accuracy zenith delay prediction at optical wavelengths, Geophys. Res. Lett. 31, 14, L14602, DOI: 10.1029/ 2004GL020308.
21 Meyer, U., A. Jäggi, and G. Beutler (2012), Monthly gravity field solutions based on GRACE observations generated with the Celestial Mechanics Approach, Earth Planet. Sci. Lett. 345-348, 72-80, DOI: 10.1016/j.epsl.2012.06.026.
22 Pavlis, N.K., S.A. Holmes, S.C. Kenyon, and J.K. Factor (2012), The development and evaluation of the Earth Gravitational Model 2008 (EGM2008), J. Geophys. Res. 117, B4, B04406, DOI: 10.1029/2011JB008916.
23 Pearlman, M.R., J.J. Degnan, and J.M. Bosworth (2002), The International Laser Ranging Service, Adv Space Res. 30, 2, 125-143, DOI: 10.1016/S0273-1177(02)00277-6.
24 Petit, G., and B. Luzum (2010), IERS Conventions 2010, IERS Technical Note No. 36, Verlag des Bundesamts für Kartographie und Geodäsie, Frankfurt am Main, Germany, 179 pp.
25 Ponchaut, F., F. Lyard, and C. Le Provost (2001), An analysis of the tidal signal in the WOCE Sea level dataset, J. Atmos. Oceanic Technol. 18, 1, 77-91, DOI: 10.1175/1520-0426(2001)018<0077:AAOTTS>2.0.CO;2.
26 Ray, J., J. Griffiths, X. Collilieux, and P. Rebischung (2014), Subseasonal GNSS errors in IGS products. In: Proc. EGU General Assembly 2014, 27 April -2May 2014, Vienna, Austria, EGU2014-8504.
27 Ray, R.D. (1999), A global ocean tide model from TOPEX/POSEIDON altimetry: GOT99.2, NASA Tech. Memo. 209478, Goddard Space Flight Centre, Greenbelt, MD, USA.
28 Ray, R.D., and R.M. Ponte (2003), Barometric tides from ECMWF operational analyses, Ann. Geophys. 21, 8, 1897-1910, DOI: 10.5194/angeo-21-1897-2003.
29 Rutkowska, M., and M. Jagoda (2010), Estimation of the elastic Earth parameters using the SLR LAGEOS 1 and LAGEOS 2 data, Acta Geophys. 58, 4, 705-716, DOI: 10.2478/s11600-009-0062-1.
30 Rutkowska, M., and M. Jagoda (2012), Estimation of the elastic Earth parameters using SLR data for the low satellites STARLETTE and STELLA, Acta Geophys. 60, 4, 1213-1223, DOI: 10.2478/s11600-012-0045-5. Savcenko, R., and W. Bosch (2008), EOT08a − empirical ocean tide model from multi-mission satellite altimetry, DGFI Report No. 81, Deutsches Geodätisches Forschungsinstitut (DGFI), München, Germany.
31 Schillak, S., and E. Wnuk (2003), The SLR stations coordinates determined from monthly arcs of LAGEOS-1 and LAGEOS-2 laser ranging in 1999-2001, Adv. Space. Res. 31, 8, 1935-1940, DOI: 10.1016/S0273-1177(03)00169-8.
32 Schillak, S., E. Wnuk, H. Kunimori, and T. Yoshino (2006), Short note: Crustal deformation in the Key Stone network detected by satellite laser ranging, J. Geod. 79, 12, 682-688, DOI: 10.1007/s00190-005-0020-x.
33 Schutz, B.E., M.K. Cheng, C.K. Shum, R.J. Eanes, and B.D. Tapley (1989), Analysis of earth rotation solution from Starlette, J. Geophys. Res. 94, B8, 10167-10174, DOI: 10.1029/JB094iB08p10167.
34 Schwiderski, E.W. (1980), On charting global ocean tides, Rev. Geophys. 18, 1, 243-268, DOI: 10.1029/RG018i001p00243.
35 Shum, C.K., P.L. Woodworth, O.B. Andersen, G.D. Egbert, O. Francis, C. King, S.M. Klosko, C. Le Provost, X. Li, J.M. Molines, M.E. Parke, R.D. Ray, M.G. Schlax, D. Stammer, C.C. Tierney, P. Vincent, and C.I. Wunsch (1997), Accuracy assessment of recent ocean tide models, J. Geophys. Res. 102, C11, 25173-25194, DOI: 10.1029/97JC00445.
36 Smith, D.E., and D.L. Turcotte (eds.) (1993), Contributions of Space Geodesy to Geodynamics: Earth Dynamics, Geodynamics Series, Vol. 24, American Geophysical Union, Washington DC.
37 Sośnica, K. (2014), Determination of Precise Satellite Orbits and Geodetic Parameters using Satellite Laser Ranging, Ph.D. Thesis, Astronomical Institute, Faculty of Science of the University of Bern, Bern, Switzerland, 253 pp.
38 Sośnica, K., D. Thaller, A. Jäggi, R. Dach, and G. Beutler (2012), Sensitivity of Lageos orbits to global gravity field models, Artif. Sat. 47, 2, 47-65, DOI: 10.2478/v10018-012-0013-y.
39 Sośnica, K., D. Thaller, R. Dach, A. Jäggi, and G. Beutler (2013), Impact of loading displacements on SLR-derived parameters and on the consistency between GNSS and SLR results, J. Geod. 87, 8, 751-769, DOI: 10.1007/s00190-013-0644-1.
40 Sośnica, K., A. Jäggi, D. Thaller, G. Beutler, and R. Dach (2014), Contribution of Starlette, Stella, and AJISAI to the SLR-derived global reference frame, J. Geod. 88, 8, 789-804, DOI: 10.1007/s00190-014-0722-z.
41 Tapley, B.D., B.E. Schutz, R.J. Eanes, J.C. Ries, and M.M. Watkins (1993), Lageos laser ranging contributions to geodynamics, geodesy, and orbital dynamics. In: D.E. Smith and D.L. Turcotte (eds.), Contributions of Space Geodesy to Geodynamics: Earth Dynamics, Geodynamics Series, Vol. 24, American Geophysical Union, Washington DC, 147-173, DOI: 10.1029/ GD024p0147. Wünsch J., P. Schwintzer, and S. Petrovic (2005), Comparison of two different ocean tide models especially with respect to the GRACE satellite mission, Scientific Technical Rep. STR05/08, GeoForschungsZentrum Potsdam, Germany.
42 Zahran K.H., G. Jentzsch, and G. Seeber (2006), Accuracy assessment of ocean tide loading computations for precise geodetic observations, J. Geodyn. 42, 4-5, 159-174, DOI: 10.1016/j.jog.2006.07.002.
DOI :
Cytuj : Białecki, M. ,Bevis, M. ,Pan, E. ,Zhou, H. ,Han, F. ,Zhu, R. ,Sun, Q. ,Xue, L. ,Zhu, S. ,Hekmatian, M. E. ,Ardestani, V. E. ,Riahi, M. A. ,Bagh, A. M. K. ,Amini, J. ,Cheng, B. ,Xu, T. ,Robbins, B. ,Shen, Z. M. ,Toushmalani, R. ,Saibi, H. ,Chakravarthini, V. ,Ramamma, B. ,Białoń, W. ,Zarzycka, E. ,Lasocki, S. ,Bose, S. K. ,Bałdysz, Z. ,Nykiel, G. ,Figurski, M. ,Szafranek, K. ,Kroszczyński, K. ,Kroszczyński, K. ,Adekoya, B. J. ,Adebesin, B. O. ,Sośnica, K. , LAGEOS Sensitivity to Ocean Tides. Acta Geophysica Vol. 63, no. 4/2015
facebook