Late Eocene to Quaternary deformation and stress field evolution of the Orava region (Western Carpathians)

Czasopismo : Acta Geologica Polonica
Tytuł artykułu : Late Eocene to Quaternary deformation and stress field evolution of the Orava region (Western Carpathians)

Autorzy :
Fedorowski, J.
Institute of Geology, Adam Mickiewicz University, Maków Polnych 16, PL-61-606 Poznań, Poland, jerzy@main.amu.edu.pl,
Dunlop, J.
Museum fur Naturkunde, Leibniz Institute for Research on Evolution and Biodiversity at the Humboldt University Berlin, Invalidenstrasse 43, D-10115 Berlin, Germany, jason.dunlop@mfn-berlin.de,
Wysocka, A.
Faculty of Geology, University of Warsaw, Al. Żwirki i Wigury 93, PL-02-089 Warszawa, Poland, anna.wysocka@uw.edu.pl,
Peskova, I.
Department of Geology and Paleontology, Faculty of Natural Sciences, Comenius University, Mlynska dolina, pav. G, 842 15 Bratislava, Slovakia, peskova@fns.uniba.sk,
Abstrakty : The northern part of theWestern Carpathians suffered polyphase deformation at the boundary between their Central and Outer parts. Palaeostress analysis in the Orava region revealed the existence of five different stress fields in the period from the Late Eocene to the Quaternary. The evolution of the stress fields was determined by detailed structural analysis of the fault slip and fold orientation data. The orientation of the stress fields shows an apparent clockwise rotation from the Late Eocene to the Quaternary. During the Late Eocene to Oligocene, E-W compression and perpendicular tension affected this area. This was the time when the Central Carpathian Palaeogene Basin formed. After this compression, the palaeostress field rotated approximatly 40-50[degrees], and NW-SE compression and NE-SW tension took place in the Early Miocene. The Middle Miocene to Pliocene was characterised by progressive rotation of the palaeostress field from NW-SE to the NE-SW direction of the maximum principal compressional stress axis ([sigma][1]). This clockwise rotation of the Oligocene to Quaternary palaeostress fields here is explained by the effect of the counterclockwise rotation of the ALCAPA microplate, and by the regional stress field changes in this region. The Quaternary stress field was reconstructed on the basis of structural measurements in the Pliocene sedimentary formations of the Orava-Nowy Targ Basin. The results of the palaeostress analysis show that the Quaternary stress field is characterised by E-W-oriented S[h] (minimum horizontal compression) and N-S-oriented S[H] (maximum horizontal compression).

Słowa kluczowe : analiza paleonaprężeń, fałdowanie, geologia strukturalna, Karpaty Zachodnie, kenozoik, paleogen, uskok, zaburzenie uskokowe, Cenozoic, Central Carpathian Palaeogene Basin, Fault slip data, Faulting and folding, Palaeostress analysis, Paleogene, Structural geology, Western Carpathians,
Wydawnictwo : Faculty of Geology of the University of Warsaw
Rocznik : 2009
Numer : Vol. 59, no. 1
Strony : 73 – 91
Bibliografia : Angelier, J. 1979. Determination of the mean principal directions of stress for a given fault population. Tectonophysics, 56, T17–T26.
Angelier, J. 1989. From orientation to magnitudes in paleostress determinations using fault slip data. Journal of Structural Geology, 11, 37–50.
Angelier, J. 1990. Inversion of field data in fault tectonics to obtain the regional stress – III. A new rapid direct inversion method by analytical means. Geophysical Journal International, 103, 363–376.
Angelier, J. 1994. Fault slip analysis and palaeostress reconstruction. In: Hancock P.L. (Ed.), Continental Deformation, pp. 53–100. Pergamon Press, University of Bristol (UK); London.
Bada, G., Fodor, L., Székely, B. and Timár, G. 1996. Tertiary brittle faulting and stress field evolution in the Gerecse Mountains, northern Hungary. Tectonophysics, 255, 269–289.
Balla, Z. 1984. The Carpathian loop and the Pannonian basin. A kinematic analysis. Geophysical Transactions, 30, 313–353.
Baumgart-Kotarba, M. 1996. On origin and age of the Orawa Basin, West Carpathians. Studia Geomorphologica Carpatho-Balcanica, 30, 101–116.
Baumgart-Kotarba, M. 2001a. Continuous tectonic evolution of the Orava Basin (Northern Carpathians) from Late Badenian to the present–day? Geologica Carpathica, 52, 103–110.
Baumgart-Kotarba, M., Dec, J. and Ślusarczyk, R. 2001b. Quaternary tectonic grabens of Wróblówka and Pieniążkowice and their relation to Neogene strata of the Orava Basin and Pliocene sediments of the Domański Wierch series in Podhale, PolishWest Carpathians. Studia Geomorphologica Carpatho-Balcanica, 35, 101–119.
Birkenmajer, K. 1986. Stages of structural evolution of the Pieniny Klippen Belt, Carpathians. Studia Geologica Polonica, 88, 7–32.
Bott, M.H.P. 1959. The mechanics of oblique slip faulting. Geological Magazine, 96, 109–117.
Chrustek, M. 2005. Morphotectonics of the Orava Basin, Western Carpathians. Geolines, 19, 26–27.
Csontos, L. 1995. Tertiary tectonic evolution of the Intra-Carpathian area: a review. Acta Vulcanologica, 7, 1–13.
Csontos, L., Nagymarosy, A., Horváth, F. and Kováč, M. 1992. Tertiary evolution of the intracarpathian area: a model. Tectonophysics, 208, 221–241.
Csontos, L., Tari, G., Bergerat, F. and Fodor, L. 1991. Evolution of the stress fields in the Carpatho-Pannonian area during the Neogene. Tectonophysics, 199, 73–91.
Delvaux, D. 1993. The TENSOR program for paleostress reconstruction: examples from the east African and the Baikal rift zones. Terra Nova, 5, supplement. No 1, Proceedings of EUG VII, Strasbourg, 4–8April, 216.
Delvaux, D. and Sperner, B. 2003. New aspects of tectonic stress inversion with reference to the TENSOR program. In: Nieuwland, D.A. (Ed.), New Insights into Structural Interpretation and Modelling. Geological Society, London, Special Publications, 212, 75–100.
Dupin, J. M., Sassi, W. and Angelier, J. 1993. Homogeneous stress hypothesis and actual fault slip: a distinct element analysis. Journal of Structural Geology, 15, 1033–1043.
Etchecopar, A., Vasseur, G. and Daignieres, M. 1981. An inverse problem in microtectonics for the determination of stress tensor from fault striation analysis. Journal of Structural Geology, 3, 51–65.
Fodor, L. 1995. From transpression to transtension: Oligocene–Miocene structural evolution of the Vienna Basin and the East Alpine–Western Carpathian junction. Tectonophysics, 242, 151–182.
Fodor, L., Magyari, Á., Kázmér, M. and Fogarasi, A. 1992. Gravity-flow dominated sedimentation on the Buda paleoslope (Hungary). Record of Late Eocene continental escape of the Bakony Unit. Geologische Rundschau, 81, 695-716.
Fodor, L., Csontos, L., Bada, G., Györfi, I. and Benkovics, L. 1999. Tertiary tectonic evolution of the Pannonian Basin system and neighbouring orogens: a new synthesis of palaeostress data. In: Durand, B., Jolivet, L., Horváth, F. and Séranne, M. (Eds), The Mediterranean Basins: Tertiary Extension within the Alpine Orogen. Geological Society, London, Special Publications, 156, 295–334.
Gapais, D., Cobbold, P. R., Bourgeois, O., Rouby D. and de Urreiztieta M. 2000. Tectonic significance of fault-slip data. Journal of Structural Geology, 22, 881–888.
Golonka, J., Krobicki, M., Oszczypko, N. and Ślączka, A. 2005. Palinspastic modelling and Carpathian Phanerozoic palaeogeographic maps. In: Oszczypko, N., Uchman, A. and Malata, E. (Eds), Palaeotectonic Evolution of the Outer Carpathian and Pieniny Klippen Belt Basins. Instytut Nauk Geologicznych Uniwersytetu Jagiellońskiego, 19–43. Kraków.
Gross, P., Köhler, E., Haško, J., Halouzka, R., Mello, J. and Nagy, A. 1993. Geology of the southern and eastern Orava, 319 pp. Dionýz Štúr Geological Institute; Bratislava. In Slovak
Gross, P. Köhler, E. and Samuel, O. 1984. A new lithostratigraphic division of the Inner-Carpathians Paleogene. Geologické Práce, Správy, 77, 75–86. In Slovak
Hancock, P.L. 1985. Brittle microtectonics: principles and practice. Journal of Structural Geology, 7, 437–457.
Haško, J. and Polák, M. 1978. Geologicalmap of the Kysucké vrchy and Krivánska Malá Fatra Mts. Dionýz Štúr Geological Institute, Bratislava.
Hók, J., Kováč, M., Kováč, P., Nagy, A. and Šujan, M. 1999. Geology and tectonics of the NE part of the Komjatice Depression. Slovak Geological Magazine, 5, 187–199.
Hók, J., Kováč, M., Rakús, M., Kováč, P., Nagy, A., Kováčová-Slamková, M., Sitár, V. and Šujan, M. 1998. Geologic and tectonic evolution of the Turiec depression in the Neogene. Slovak Geological Magazine, 4, 165–176.
Hók, J., Šimon, L., Kováč, P., Elečko, M., Vass, D. and Halmo, O. 1995. Tectonics of the Hornonitrianska kotlina depression in the Neogene. Geologica Carpathica, 46, 191–196.
Jarosiński M. 1998. Contemporary stress field distortion in the Polish part of the Western Outer Carpathians and their basement. Tectonophysics, 297, 91–119.
Jarosiński M. 2005. Ongoing tectonics reactivation of the Outer Carpathians and its impact on the foreland: Results of borehole breakout measurements in Poland. Tectonophysics, 410, 189–216.
Książkiewicz, M. 1977. The tectonics of the Carpathians. In: Pożaryski, W. (Ed.), Geology of Poland, vol. 4. Instytut Geologiczny, Warszawa, pp. 476–620.
Kováč, M. 2000. Geodynamical, palaeogeographical and structural evolution of the Carpathian-Pannonian region during the Miocene: New sight on the Neogene basins of Slovakia. 202 pp. VEDA Publisher; Bratislava. In Slovak
Kováč, M., Baráth, I., Holický, I., Marko, F. and Túnyi I. 1989. Basin opening in the Lower Miocene strike-slip zone in the SW part of the Western Carpathians. Geologický Zborník Geologica Carpathica, 40, 37–62.
Kováč, M. and Márton, E. 1998. To rotate or not to rotate: Palinspastic reconstruction of the Carpatho–Pannonian area during the Miocene. Slovak Geological Magazine, 4, 75–85.
Kováč, M., Nagymarosy, A., Soták, J. and Šútovská, K. 1993. Late Tertiary paleogeographic evolution of the Western Carpathians. Tectonophysics, 226, 401–416.
Kováč, M., Kráľ, J., Márton, E., Plašienka, D. and Uher, P. 1994. Alpine uplift history of the Central Western Carpathians: geochronological, paleomagnetic, sedimentary and structural data. Geologica Carpathica, 45, 83–96.
Kováč, P. and Hók, J. 1996. Tertiary development of the western part of the Pieniny Klippen Belt. Slovak Geological Magazine, 2, 137–149.
Lexa, J., Bezák, B., Elečko, M., Eliáš, M., Konečný, V., Less, Gy., Mandl, G. W., Mello, J., Pálenský, P., Pelikán, P., Polák, M., Potfaj, M., Radócz, Gy. Ryłko, W., Schnabel, G. W., Stráník, Z., Vass, D., Vozár, J. and Zelenka, T. 2000: Geological map of Western Carpathians and adjacent areas. Dionýz Štúr Geological Institute, Bratislava.
Maerten, L. 2000. Variation in slip on intersecting normal faults: Implications for paleostress inversion. Journal of Geophysical Research, 105 (B11), 25 553–25 565.
Marko, F. 1993. Sense of movement criteria on mesoscale shear fault surfaces (a review). Mineralia Slovaca, 25, 285–287. In Slovak
Marko, F. and Kováč, M. 1996. Reconstruction of the Miocene tectonic evolution of the Vaďovce depression based on the analysis of structural and sedimentary record (Western Carpathians). Mineralia Slovaca, 28, 81–91. In Slovak
Marko, F. and Vojtko, R. 2006. Structural record and tectonic history of the Mýto-Tisovec fault (Central Western Carpathians). Geologica Carpathica, 57, 211–221.
Marko, F., Fodor, L. and Kováč, M. 1991. Miocene strike-slip faulting and block rotation in Brezovské Karpaty Mts. Mineralia Slovaca, 23, 201–213.
Marko, F., Kováč, M., Fodor, L. and Šútovská, K. 1990. Deformations and kinematics of a Miocene shear zone in the northern part of the Little Carpathians (Buková Furrow, Hrabník Formation).Mineralia Slovaca, 22, 399–410. In Slovak
Marko, F., Plašienka, D. and Fodor, L. 1995. Meso–Cenozoic stress field within the Alpine-Carpathian transition zone: Areview. Geologica Carpathica, 46, 19–27.
Marko, F., Vojtko, R., Plašienka, D., Sliva, Ľ., Jablonský, J., Reichwalder, P. and Starek, D. 2005.Acontribution to the tectonics of the Periklippen zone near Zázrivá (Western Carpathians). Slovak Geological Magazine, 11, 37–43.
Márton, E., Mastella, L. and Tokarski, A.K. 1999. Large Counterclockwise Rotation of the Inner West Carpathian Paleogene Flysch–Evidence from Paleomagnetic Investigations of the Podhale Flysch (Poland). Physics and Chemistry of the Earth (A), 24, 645–649.
Márton, E., Pagáč, P. and Túnyi, I., 1992. Paleomagnetic investigation on Late Cretaceous–Cenozoic sediments from the NW part of the Pannonian Basin. Geologica Carpathica, 43, 363–368.
Michael, A.J. 1984.Determination of stress from slip data: fault and folds. Journal of Geophysical Research, 89, B13, 11517–11526.
Nagy, A., Vass, D., Petrík, R. and Pereszlényi, M. 1996. Tectonogenesis of the Orava Depression in the light of latest biostratigraphic investigations and organic matter alteration study. Slovak Geological Magazine, 2, 49–58.
Nemčok, J., Bezák, V., Janák, M., Kahan, Š., Ryka, W., Kohút, M., Lehotský, I., Wieczorek, J., Zelman, J., Mello, J., Halouzka, R., Raczkowski, W. and Reichwalder, P. 1993. Explanation of geological map of the Tatra Mountains (1:50,000). GÚDŠ, Bratislava, 135 p. In Slovak
Nemčok, J., Bezák, V., Biely, A., Gorek, A., Gross, P., Halouzka, R., Janák, M., Kahan, Š., Kotański, Z., Lefeld, J., Mello, J., Reichwalder, P., Raczkowski, W., Roniewicz, P., Ryka, W., Wieczorek, J. and Zelman, J. 1994. Geological map of the Tatra Mountains. MŽP SR, GÚDŠ, Bratislava.
Nemčok, M. and Nemčok, J. 1994. Late Cretaceous deformation of the Pieniny Klippen Belt, West Carpathians. Tectonophysics, 239, 81–109.
Nieto-Samaniego, A.F. and Alaniz-Alvarez, S.A. 1996. Origin and tectonic interpretation of multiple fault patterns. Tectonophysics, 270, 197–206.
Olszewska, B. and Wieczorek, J. 1998. The Paleogene of the Podhale basin (Polish Inner Carpathians) – micropaleontological perspective. Przegląd Geologiczny, 46, 721–728.
Oszczypko, N. and Ślączka, A., 1989. The evolution of the Miocene basin in the Polish Outer Carpathians and their foreland. Geologický Zborník, 40, 23–37.
Oszczypko, N., Oszczypko-Clowes, M., Golonka, J. and Marko, F. 2005. Oligocene–Lower Miocene sequences of the Pieniny Klippen Belt and adjacent Magura nappe between Jarabina and Poprad River (East Slovakia and South Poland – their tectonic position and paleogeographic implications). Geological Quarterly, 49, 379–402.
Pešková, I. 2005. Terciérna tektonika a paleonapäťová analýza Oravskej kotliny. Manuscript, Diploma thesis, 81 pp. Comenius University; Bratislava.
Petit, J.P. 1987. Criteria for the sense of movement on fault surfaces in brittle rocks. Journal of Structural Geology, 9, 597–608.
Plašienka, D. 1999. Tektochronológia a paleotektonický model jursko – kriedového vývoja Centrálnych Západných Karpát. 125 pp. VEDA Publisher; Bratislava.
Plašienka, D. 2003. Development of basement–involved fold and thrust structures exemplified by the Tatric–Fatric–Veporic nappe system of the Western Carpathians (Slovakia). Geodinamica Acta, 16, 21–38.
Plašienka, D., Grecula, P., Putiš, M., Kováč, M. and Hovorka, D. 1997. Evolution and structure of the Western Carpathians: an overview. In: Grecula P., Hovorka D. and Putiš, M. (Eds), Geological evolution of the Western Carpathians. Mineralia Slovaca–Monograph, Bratislava, 1–24.
Plašienka, D., Soták, J. and Prokešová, R. 1998. Structural profiles across the Šambron-Kamenica Periklippen Zone of the Central Carpathian Paleogene Basin in NE Slovakia. Mineralia Slovaca, 29, 173–184.
Pollard, D.D., Saltzer, S.D. and Rubin, A.M. 1993. Stress inversion method: are they based on faulty assumptions? Journal of Structural Geology, 15, 1045–1054.
Pomianowski P. 1995. Structure of the Orava Basin in the light of selected geophysical data. Annales Societatis Geologorum Poloniae, 64, 67–80. In Polish with English summary
Pomianowski P. 2003. Tectonics of the Orava-Nowy Targ Basin – results of the combined analysis of the gravity and geoelectrical data. Przegląd Geologiczny, 51, 498–506.
Pospíšil, L. 1990. The geophysical gravity models of the Orava Neogene basin. Zemný Plyn a Nafta, 35, 301–310. In Czech
Ratschbacher, L., Frisch, W., Linzer, H.G. and Merle, O. 1991. Lateral extrusion in the Eastern Alps. Part 2: Structural analysis. Tectonics, 10, 257–271.
Ratschbacher, L., Frisch, W., Linzer, H.-G., Sperner, B., Meschede, M., Decker, K., Nemčok, M., Nemčok, J. and Grygar, R. 1993. The Pieniny Klippen Belt in the Western Carpathians of northeastern Slovakia: structural evidence for transpression. Tectonophysics, 226, 471–483.
Roberts, G.P. and Ganas, A. 2000. Fault-slip directions in central and southern Greece measured from striated and corrugated fault planes: Comparison with focal mechanism and geodetic data. Journal of Geophysical Research, 105 (B10), 23 443–23 462.
Roth, Z. (Ed.) 1963. Explanation to geological map at a scale of M 1:200 000, sheet M-34-XX (Trstená).Archive-Geofond; Bratislava. In Slovak
Royden, L. 1988. Late Cenozoic tectonics of the Pannonian Basin System. In: Royden, L. and Horváth, F. (Eds), The Pannonian Basin. Association Americal Petroleum Geologists Memoirs, 45, 27–48.
Soták, J. 1998. Central Carpathian Paleogene and its constrains. Slovak Geological Magazine, 4, 203–211.
Soták, J., Bebej, J. and Biroň, A. 1996. Detrital analyse of the Paleogene flysch deposits of the Levoča Mts: evidence for sources and paleogeography. Slovak Geological Magazine, 2, 345–349.
Soták, J., Pereszlényi, M., Marschalko, R., Milička, J. and Starek, D. 2001. Sedimentology and hydrocarbon habitat of the submarine-fan deposits of the Central Carpathian Paleogene Basin (NE Slovakia),Marine and Petroleum Geology, 18, 87–114.
Soták, J. and Starek, D. 2000. Synorogenic deposition of turbidite fans in the Central-Carpathian Paleogene Basin: evidence for and against sea-level and climatic changes, Slovak Geological Magazine, 6, 191–194.
Sperner B., Ratschbacher L. and Nemčok M. 2002. Interplay between subduction retreat and lateral extrusion: Tectonics of the Western Carpathians. Tectonics, 21, 1028–1051.
Sperner B., Müller B., Heidbach O., Delvaux D., Reinecker J. and Fuchs K. 2003. Tectonic stress of the Earth’s crust: advances in the World Stress Map Project. In: Nieuwland D.A. (Ed.), New insights in structural interpretation and modelling. Geological Society, London, Special Publications, 212, 101–128.
Starek D. 2001. Sedimentology and palaeodynamics of the Palaeogene formations in the Central Western Carpathians (Orava region). Manuscript, PhD. Thesis, Geological Institute of the Slovak Academy of Sciences, 152 pp. Bratislava. In Slovak
Tari, G., Báldi, T. and Báldi-Beke, M. 1993. Paleogene retroarc flexural basin beneath the Neogene Pannonian Basin: a geodynamic model. Tectonophysics, 226, 433–456.
Tokárová, E. 2004. Structural analysis and palaeostress reconstruction in the Spišská Magura and Podhalie regions. Manuscript, Diploma thesis, 64 pp. Comenius University; Bratislava. In Slovak
Twiss, R.J. and Unruh, J.R. 1998.Analysis of fault slip inversions: Do they constrain stress or strain rate? Journal of Geophysical Research, 101, 8335–8361.
Vojtko, R. 2003. Fault slip analysis and geodynamical evolution of the central part of the Slovenské rudohorie Mts. Manuscript, PhD thesis, 91 pp. Comenius University; Bratislava. In Slovak
Vojtko, R., Hók, J., Kováč, M., Sliva, Ľ., Joniak, P. and Šujan, M. 2008. Pliocene to Quaternary stress field change in the Western Carpathians (Slovakia). Geological Quarterly, 52, 19–30.
Wagreich, M. 1995. Subduction tectonic erosion and Late Cretaceous subsidence along the northern Austroalpine margin (Eastern Alps, Austria). Tectonophysics, 242, 63–78.
Wallace, R.E. 1951. Geometry of shearing stress and relation to faulting. Journal of Structural Geology, 59, 118–130.
Wallbrecher, E. 1986. Tektonische und gefügeanalytische Arbeitsweisen, 244 pp. Enke; Stuttgart.
Winkler, W. and Slączka, A. 1992. Sediment dispersal and provenance in the Silesian, Dukla, and Magura flysch nappes (Outer Carpathians, Poland). Geologische Rundschau, 81, 371–382.
Zuchiewicz, W. 1998. Cenozoic stress field and jointing in the Outer West Carpathians, Poland. Journal of Geodynamics, 26, 57–68.
DOI :
Cytuj : Fedorowski, J. ,Dunlop, J. ,Wysocka, A. ,Peskova, I. , Late Eocene to Quaternary deformation and stress field evolution of the Orava region (Western Carpathians). Acta Geologica Polonica Vol. 59, no. 1/2009
facebook