Longitudinal ultrasonic waves in DC electric field

Czasopismo : Acta Geophysica
Tytuł artykułu : Longitudinal ultrasonic waves in DC electric field

Autorzy :
Sobotka, J.
University of Wrocław, Institute of Geological Sciences, Department of Structural Geology, Wrocław, Poland, jerzysob@ing.uni.wroc.pl,
Abstrakty : The results of experimental studies of the propagation of longitudinal waves in saturated rock samples in which there is a flow of electric charges are presented. It is shown that the electric field affects elastic parameters in heterophase media by changing their dynamic characteristics. The aim of the study of the effect of electric field on the propagation of elastic waves in saturated porous media was to determine the optimum conditions for this effect, and to construct a set of effective parameters which could be used to increase the effectiveness of seismoacoustic prospecting methods, particularly acoustic logging, and be helpful for developing new methods of increasing the effectiveness of oil extraction from productive wells.

Słowa kluczowe : electric field> , acoustic pulse amplitude, rock samples, well filtration zone, electrical double layer,
Wydawnictwo : Instytut Geofizyki PAN
Rocznik : 2009
Numer : Vol. 57, no. 2
Strony : 247 – 256
Bibliografia : 1. Adler, R. (1971), Simple theory of acoustic amplification, IEEE T. Son. Ultrason. 18, 3, 115-117.
2. Aleksandrov, K.S., M.P. Zaitseva, A.M. Sysoev, and Yu.I. Kokorin (1982), The piezoelectric resonator in a DC electric field, Ferroelectrics 41, 1, 3-8.
3. Chanturishvili, L.S., T.L. Chelidze, and M.L. Chelishvili (1971), Rocks in Physical Fields, Metsniereba, Tbilisi, 232 pp. (in Russian).
4. Cherniak, G.Ya. (1987), Electromagnetic Methods in Hydrogeology and Engineering Geology, Nedra, Moscow, 213 pp. (in Russian).
5. Hutson, A.R. (1962), Acousto-electric explanation of non-ohmic behavior in piezoelectric semiconductors and bismuth, Phys. Rev. Lett. 9, 7, 296-298, DOI: 10.1103/PhysRevLett.9.296.
6. Kasimzadze, M.S., R.F. Halilov, and A.N. Balashov (1973), Electrokinetic Converters of Information, Energia, Moscow, 247 pp. (in Russian).
7. Kuznetsov, O.L., and E.M. Simkin (1990), Transformation and Interaction of Geophysical Fields in the Lithosphere, Nedra, Moscow, 269 pp. (in Russian).
8. Loginov, K.I., I.V. Loginov, and T.P. Trifonova (1989a), Dependence of characteristics of acoustic wave paths on hydrodynamic statement of saturated porous media. In: Innovative Methods of Geophysical Research on Irregularities in the Earth's Crust, Moscow, 141-143 (in Russian).
9. Loginov, K.I., I.V. Loginov, and T.P. Trifonova (1989b), Nonlinear seismicacourstic properties of rocks in hydrodynamic non-equilibrium. In: Innovative Methods of Geophysical Research on Irregularities in the Earth's Crust, Moscow, 143-144 (in Russian).
10. Rodriguez, S. (1963), Modification of the velocity of sound in metals by an applied magnetic field, Phys. Rev. 130, 5, 1778-1783, DOI: 10.1103/PhysRev.130.1778.
11. Skorchelletti, V.V. (1963), Theoretical Electrochemistry, Goshimizdat, Leningrad, 608 pp. (in Russian).
12. Sobotka, J. (2004), The laboratory modelling of effects of electric and acoustic fields interaction in porous media saturated with water or hydrocarbons, Acta Geophys. Pol. 52, 3, 381-396.
13. Spector, H.N. (1962), Amplification of acoustic waves through interaction with conduction electrons, Phys. Rev. 127, 4, 1084-1090, DOI: 10.1103/PhysRev.127.1084.
14. Spector, H.N. (1968), Solution of the Boltzmann equation for electrons interacting with acoustic waves in strong electric fields, Phys. Rev. 165, 2, 562-565, DOI: 10.1103/PhysRev.165.562.
Cytuj : Sobotka, J. , Longitudinal ultrasonic waves in DC electric field. Acta Geophysica Vol. 57, no. 2/2009