Modeling of deep magnetovariation soundings on the rotating earth

Czasopismo : Acta Geophysica
Tytuł artykułu : Modeling of deep magnetovariation soundings on the rotating earth

Autorzy :
Vitkulin, A. V.
Institute of Volcanology and Seismology, Far East Branch, Russian Academy of Sciences, Petropavlovsk-Kamchatski, Russia, vik@kscnet.ru,
Semenov, V. Y.
Institute of Geophysics, Polish Academy of Sciences, Warszawa, Poland, sem@igf.edu.pl,
Abstrakty : Induced magnetic fields in the Earth arise due to two phenomena: induction generated by the time-variable exciting field and the motional induction caused by movement of the conductive planet in the outer magnetic fields. The comparison of both approaches on the spherical Earth has been analyzed in the present work for two sources in the ionosphere and magnetosphere. For this aim, both sources with their natural sizes and positions have been modeled analytically to obtain the fields on the layered sphere at the middle latitudes. The conditions when the steady ring current field is not influenced by the Earth’s rotation have been established theoretically. The synthetic diurnal magnetograms were used for the deep sounding by the magnetovariation spatial gradient method and the result was compared with the one obtained on the non- rotating sphere. Sounding results using both approaches were found different above the 2D inhomogeneous mantle. The precessions of the magnetospheric belt current pole for daily sampling frequency were presented using several geomagnetic observatory data in the northern hemisphere.

Słowa kluczowe : mantle induction soundings, rotating Earth,
Wydawnictwo : Instytut Geofizyki PAN
Rocznik : 2013
Numer : Vol. 61, no. 2
Strony : 264 – 280
Bibliografia : Averochkina, I.A., V.I. Dmitriev, V.V. Sochelnikov, and E.B. Fainberg (1978), On calculation of theoretical curves of deep electromagnetic sounding for model of the spherical Earth’s, Izv. – Phys. Solid Earth 24, 3, 63-66 (in Russian).
Banks, R.J. (1969), Geomagnetic variations and the electrical conductivity of the upper mantle, Geophys. J. Roy. Astron. Soc. 17, 5, 457-487, DOI: 10.1111/j.1365-246X.1969.tb00252.x.
Berdichevsky, M.N., L.L. Vanjan, and E.B. Fainberg (1969), The frequency sounding of the Earth using spherical analysis results of geomagnetic variations, Geomagn. Aeron. 9, 372-374 (in Russian).
Berdichevsky, M.N., and M.S. Zhdanov (1984), Advanced Theory of Deep Geomagnetic Sounding, Elsevier, Amsterdam, 408 pp.
Born, M., and E. Wolf (1964), Principles of Optics, Pergamon Press, Oxford.
Bullard, E.C. (1949), Electromagnetic induction in a rotating sphere, Proc. Roy. Soc. Lond. A 199, 1059, 413-443, DOI: 10.1098/rspa.1949.0146.
Campbell, W.H. (1989), The regular geomagnetic-field variations during quiet solar conditions. In: J.A. Jacobs (ed.), Geomagnetism, Vol. 3, Academic Press, London, 385-460.
Counil, J.L., M. Menvielle, and J.L. Le Mouel (1987), Upper mantle lateral heterogeneities and magnetotelluric daily variation data, Pure Appl. Geophys. 125, 2-3, 319-340, DOI: 10.1007/BF00874500.
Fujii, I., and A. Schultz (2002), The 3D electromagnetic responses of the Earth to ring current and auroral oval excitation, Geophys. J. Int. 151, 3, 689-709, DOI: 10.1946/j.1365-246X.2002.01775.x.
Guglielmi, A.V., and M.B. Gokhberg (1987), On the magnetotelluric sounding in the seismically active areas, Izv. – Phys. Solid Earth 33, 11, 122-123 (in Russian).
Hermance, J.F. (1995), Electrical conductivity models of the crust and mantle. In: T.J. Ahrens (ed.), Global Earth Physics. A Handbook of Physical Constants, American Geophysical Union, Washington.
Hermance, J.F., and W. Wang (1992), “Mode-blind” estimates of deep earth resistivity, J. Geomag. Geoelectr. 44, 6, 373-389, DOI: 10.5636/jgg.44.373.
Hvoždara, M. (1971), On some effects connected with electromagnetic induction in a rotating Earth, Studia Geophys. Geodet. 15, 2, 173-180, DOI: 10.1007/BF01623914.
Hvoždara, M. (1974), Non-harmonic electromagnetic induction in a rotating conducting Earth, Contrib. Geophys. Inst. Slovak. Acad. Sc. 5, 63-72.
Hvoždara, M., and G. Siráň (1975), Penetration of long-period geomagnetic variations to the core of the Earth, Acta Facult. Rerum Natural. Univer. Comen. Astron. Geophys. 1, 27-39.
Hvoždara, M. (1976), Electromagnetic induction in a multi-layer rotating Earth due to an external harmonic magnetic field, Contrib. Geophys. Inst. Slovak. Acad. Sc. 6, 113-125.
Hvoždara, M. (1980), Anomalies in the field of the Sq-variations and their relation to lateral conductivity inhomogeneities of the Earth, Contrib. Geophys. Inst. Slovak. Acad. Sc. 10, 63-67.
Hvoždara, M., and A. Prigancová (2002), Geomagnetic effects due to an eclipseinduced low-conductivity ionospheric spot, J. Geophys. Res. 107, A12, 1467, DOI: 10.1029/2002JA009260.
Hvoždara, M., and J. Vozar (2007), Electromagnetic induction in the spherical rotating Earth due to asymmetric current loops or belts. In: 22 Kolloquium Elektromagnetische Tiefenforschung, 1-5 October 2007, Decin, Czech Republic, 82-97, http://bib.gfz-potsdam.de/emtf/2007/.
Jones, A.G. (1982), Observations of the electrical asthenosphere beneath Scandinavia, Tectonophysics 90, 1-2, 37-55, DOI: 10.1016/0040-1951(82)90252-9.
Kharin, E.P., and V.Yu. Semenov (1989), Model of geomagnetic field variations AT the period range from 4 days until 3 years, Il Novo Cimento C 12, 5, 547-554, DOI: 10.1007/BF02508014.
Kuckes, A.F. (1973), Relations between electrical conductivity of a mantle and fluctuating magnetic fields, Geophys. J. Roy. Astron. Soc. 32, 1, 119- 130, DOI: 10.1111/j.1365-246X.1973.tb06523.x.
Kuckes, A.F., A.G. Nekut, and B.G. Thompson (1985), A geomagnetic scattering theory for evaluation of earth structure, Geophys. J. Roy. Astron. Soc. 83, 2, 319-330, DOI: 10.1111/j.1365-246X.1985.tb06489.x.
Kuvshinov, A., H. Utada, D. Avdeev, and T. Koyama (2005), 3-D modelling and analysis of Dst C-responses in the North Pacific Ocean region, revisited, Geophys. J. Int. 160, 2, 505-526, DOI: 10.1111/j.1365-246X.2005.02477.x.
Lilley, F.E.M., D.V. Woods, and M.N. Sloane (1981), Electrical conductivity from Australian magnetometer arrays using spatial gradient data, Phys. Earth Planet. Inter. 25, 3, 202-209, DOI: 10.1016/0031-9201(81)90062-5.
Logvinov, I. (2002), Applying the horizontal spatial gradient method for the deep conductivity estimations in the Ukraine, Acta Geophys. Pol. 50, 4, 567-573.
Maus, S., and H. Lühr (2005), Signature of the quiet-time magnetospheric magnetic field and its electromagnetic induction in the rotating Earth, Geophys. J. Int. 162, 3, 755-763, DOI: 10.1111/j.1365-246X.2005.02691.x.
Nishida, A. (1978), Geomagnetic Diagnosis of the Magnetosphere, Physics and Chemistry in Space, Vol. 9, Springer Verlag, New York, 256 pp.
Olsen, N. (1998), The electrical conductivity of the mantle beneath Europe derived from C-responses from 3 to 720 hr, Geophys. J. Int. 133, 2, 298-308, DOI: 10.1046/j.1365-246X.1998.00503.x.
Olsen, N. (1999), Long-period (30 days – 1 year) electromagnetic sounding and the electrical conductivity of the lower mantle beneath Europe, Geophys. J. Int. 138, 1, 179-187, DOI: 10.1046/j.1365-246x.1999.00854.x.
Olsen, N., and M. Mandea (2007), Will the magnetic North Pole move to Siberia? Eos Trans. AGU 88, 29, 293-295, DOI: 10.1029/2007EO290001.
Parkinson, W.D. (1983), Introduction to Geomagnetism, Scottish Academic Press, Edinburgh, 434 pp.
Schmucker, U. (1970), Anomalies of geomagnetic variations in the Southwestern United States, Bull. Scripps Inst. Oceanogr. 13, 1-165.
Schmucker, U. (1999a), A spherical harmonic analysis of solar daily variations in the years 1964-1965: response estimates and source fields for global induction – I. Methods, Geophys. J. Int. 136, 2, 439-454, DOI: 10.1046/j.1365-246X.1999.00742.x.
Schmucker, U. (1999b), A spherical harmonic analysis of solar daily variations in the years 1964-1965: response estimates and source fields for global induction – II. Results, Geophys. J. Int. 136, 2, 455-476, DOI: 10.1046/j.1365-246X.1999.00743.x.
Schmucker, U. (2003), Horizontal spatial gradient sounding and geomagnetic depth sounding in the period range of daily variations. In: 20. Kolloquium Elektromagnetische Tiefenforschung, 29.09-3.10.2003, Königstein, 228-237.
Schmucker, U. (2008), Comparative induction studies with geomagnetic observatory data in three epochs. In: 19th Int. Workshop on Electromagnetic Induction in the Earth, 23-29 October, 2008, Beijing, China, 879-884.
Semenov, V.Yu., and W. Jóźwiak (1999), Model of the geoelectrical structure of the mid- and lower mantle in the Europe–Asia region, Geophys. J. Int. 138, 2, 549-552, DOI: 10.1046/j.1365-246X.1999.00888.x.
Semenov, V.Yu., and V.N. Shuman (2010), Impedances for induction soundings of the Earth’s mantle, Acta Geophys. 58, 4, 527-542, DOI: 10.2478/s11600-010-0003-z.
Semenov, V.Yu., B. Ladanivskyy, and K. Nowożyński (2011), New induction sounding tested in Central Europe, Acta Geophys. 59, 5, 815-832, DOI: 10.2478/s11600-011-0030-4.
Smythe, W.R. (1950), Static and Dynamic Electricity, McGraw Hill Book, New York.
Shuman, V.N. (1999), Scalar local impedance conditions and the impedance tensor in processing and interpretation of a magnetotelluric experiment, Geophys. J., Kiev 19, 361-385 (in Russian).
Shuman, V., and S. Kulik (2002), The fundamental relations of impedance type in general theories of the electromagnetic induction studies, Acta Geophys. Pol. 50, 4, 607-618.
Sochelnikov, V.V. (1979), Principles of the Theory of the Natural Electromagnetic Field in a Sea, Gidrometeoizdat, Leningrad (in Russian).
Vanyan, L.L., V.A. Kuznetsov, T.V. Lyubetskaya, N.A. Palshin, T. Korja, I. Lahti, and the BEAR Working Group (2002), Electrical conductivity of the crust beneath Central Lapland, Izv. – Phys. Solid Earth 38, 10, 798-815.
Vozar, J., and V.Yu. Semenov (2010), Compatibility of induction methods for mantle soundings, J. Geophys. Res. 115, B03101, DOI: 10.1029/2009JB006390.
DOI :
Cytuj : Vitkulin, A. V. ,Semenov, V. Y. , Modeling of deep magnetovariation soundings on the rotating earth. Acta Geophysica Vol. 61, no. 2/2013
facebook