Modelling of solute transport in rivers under different fflow rates: A case study without transient storage

Czasopismo : Acta Geophysica
Tytuł artykułu : Modelling of solute transport in rivers under different fflow rates: A case study without transient storage

Autorzy :
Eshagh, M.
Division of Geodesy and Geoinformatics, Royal Institute of Technology (KTH), Stockholm, Sweden; Department of Geodesy, K.N.Toosi University of Technology, Tehran, Iran, eshagh@kth.se,
Teisseyre, R.
Institute of Geophysics, Polish Academy of Sciences, Warszawa, Poland, rt@igf.edu.pl,
Lizurek, G.
Institute of Geophysics, Polish Academy of Sciences, Warszawa, Poland, lizurek@igf.edu.pl,
Asfahani, J.
Atomic Energy Commission, Damascus, Syria, cscientific@aec.org.sy,
Baddari, K.
Laboratory of Physics of the Earth UMBB, Boumerdes, Algeria, doyenfs@umbb.dz,
Bose, S. K.
Centre for Theoretical Studies, Indian Institute of Technology, Kharagpur, West Bengal, India, sujitbose@yahoo.com,
Romanowicz, R. J.
Institute of Geophysics, Polish Academy of Sciences, Warszawa, Poland, romanowicz@igf.edu.pl,
Abstrakty : A methodology to derive solute transport models at any flow rate is presented. The novelty of the proposed approach lies in the assessment of uncertainty of predictions that incorporate parameterisation based on flow rate. A simple treatment of un certainty takes in to account hetero- scedastic modelling errors related to tracer experiments performed over a range of flow rates, as well as the uncertainty of the observed flow rates themselves. The proposed approach is illustrated using two models for the transport of a conservative solute: a physically based, deterministic, advection-dispersion model (ADE), and a stochastic, transfer function based, active mixing volume model (AMV). For both models the uncertainty of any parameter increases with increasing flow rate (reflecting the heteroscedastic treatment of modelling errors at different observed flow rates), but in contrast the uncertainty of travel time, computed from the predicted model parameters, was found to decrease with increasing flow rate.

Słowa kluczowe : conservative solute transport, advection dispersion, active mixing volume, uncertainty analysis, parameterisation,
Wydawnictwo : Instytut Geofizyki PAN
Rocznik : 2013
Numer : Vol. 61, no. 1
Strony : 98 – 125
Bibliografia : Ani, E.-C., S. Wallis, A. Kraslawski, and P.S. Agachi (2009), Development, calibration and evaluation of two mathematical models for pollutant transport in a small river, Environ. Modelling Softw. 24, 10, 1139-1152, DOI: 10.1016/j.envsoft.2009.03.008.
Beer, T., and P.C. Young (1983), Longitudinal dispersion in natural streams, J. Environ. Eng. 109, 5, 1049-1067, DOI: 10.1061/(ASCE)0733-9372(1983)109:5(1049).
Beven, K. (2009), Environmental Modelling: An Uncertain Future?, Routledge, New York.
Beven, K., and A. Binley (1992), The future of distributed models: Model calibration and uncertainty prediction, Hydrol. Process. 6, 3, 279-298, DOI: 10.1002/hyp.3360060305.
Beven, K.J., and P.C. Young (1988), An aggregated mixing zone model of solute transport through porous media, J. Contam. Hydrol. 3, 2-4, 129-143, DOI: 10.1016/0169-7722(88)90028-9.
Camacho, L.A., and R.A. Gonzáles (2008), Calibration and predictive ability analysis of longitudinal solute transport models in mountain streams, Environ. Fluid Mech. 8, 5-6, 597-604, DOI: 10.1007/s10652-008-9109-0.
Czernuszenko, W., and P.M. Rowiński (1997), Properties of the dead-zone model of longitudinal dispersion in rivers, J. Hydraul. Res. 35, 4, 491-504, DOI: 10.1080/00221689709498407.
Davis, P.M., and T.C. Atkinson (2000), Longitudinal dispersion in natural channels: 3. An aggregated dead zone model applied to the River Severn, U.K., Hydrol. Earth Syst. Sc. 4, 3, 373-381, DOI: 10.5194/hess-4-373-2000.
Deng, Z.Q., L. Bengtsson, V.P. Singh, and D.D. Adrian (2002), Longitudinal dispersion coefficient in single-channel streams, J. Hydraul. Eng. 128, 10, 901-916, DOI: 10.1061/(ASCE)0733-9429(2002)128:10(901).
Fischer, H.B. (1967), The mechanics of dispersion in natural streams, J. Hydraul. Div. ASCE 93, 6, 187-216.
French, R.H. (1986), Open-Channel Hydraulics, McGraw-Hill, New York.
Harvey, J.W., and B.J. Wagner (2000), Quantifying hydrologic interactions between streams and their subsurface hyporheic zones. In: J.B. Jones and P.J. Mulholland (eds.), Streams and Ground Waters, Academic Press, San Diego, 3-44.
Hudson, H.R., D.A. McMillan, and C.P. Pearson (1999), Quality assurance in hydrological measurement, Hydrol. Sci. J. 44, 5, 825-834, DOI: 10.1080/02626669909492276.
Hunt, B. (1999), Dispersion model for mountain streams, J. Hydraul. Eng. 125, 2, 99-105, DOI: 10.1061/(ASCE)0733-9429(1999)125:2(99).
Kavetski, D., G. Kuczera, and S.W. Franks (2006), Bayesian analysis of input uncertainty in hydrological modeling: 1. Theory, Water Resour. Res. 42, W03407, DOI: 10.1029/2005WR004368.
Lees, M.J., L.A. Camacho, and S. Chapra (2000), On the relationship of transie nt storage and aggregated dead zone models of longitudinal solute transport in streams, Water Resour. Res. 36, 1, 213-224, DOI: 10.1029/1999WR900265.
Nordin, C.F., and B.M. Troutman (1980), Longitudinal dispersion in rivers: The persistence of skewness in observed data, Water Resour. Res. 16, 1, 123-128, DOI: 10.1029/WR016i001p00123.
Osuch, M., R.J. Romanowicz, and S. Wallis (2008), Uncertainty in the relationship between flow and parameters in models of pollutant transport, Publs. Inst. Geophys. Pol. Acad. Sc. E-10, 406, 127-138.
Pappenberger, F., K.J. Beven, K. Frodsham., R.J. Romanowicz, and P. Matgen (2007), Grasping the unavoidable subjectivity in calibration of flood inundation models: A vulnerability weighted approach, J. Hydrol. 333, 2-4, 275-287, DOI: 10.1016/j.jhydrol.2006.08.017.
Petersen-Øverleir, A. (2004), Accounting for heteroscedasticity in rating curve estimates, J. Hydrol. 292, 1-4, 173-181, DOI: 10.1016/j.jhydrol.2003.12.024.
Piotrowski, A., S.G. Wallis, J.J. Napiórkowski, and P.M. Rowiński (2007), Evaluation of 1-D tracer concentration profile in a small river by means of Multi-Layer Perceptron Neural Networks, Hydrol. Earth Syst. Sci. Discuss. 4, 4, 2739-2768, DOI: 10.5194/hessd-4-2739-2007.
Press, W.H., B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling (1992), Numerical Recipes in Fortran: The Art of Scientific Computing, 2nd ed., Cambridge University Press, Cambridge, 963 pp.
Romanowicz, R.J., and K.J. Beven (2006), Comments on generalised likelihood uncertainty estimation, Reliab. Eng. Syst. Safe. 91, 10-11, 1315-1321, DOI: 10.1016/j.ress.2005.11.030.
Romanowicz, R., H. Higson, and I. Teasdale (2000), Bayesian uncertainty estimation methodology applied to air pollution modelling, Environmetrics 11, 3, 351-371, DOI: 10.1002/(SICI)1099-095X(200005/06)11:3<351::AIDENV424>3.0.CO;2-Z.
Rowiński, P.M., and M.M. Chrzanowski (2011), Influence of selected fluorescent dyes on small aquatic organisms, Acta Geophys. 59, 1, 91-109, DOI: 10.2478/s11600-010-0024-7.
Schmid, B.H. (2008), Can longitudinal solute transport parameters be transferred to different flow rates?, J. Hydrol. Eng. 13, 6, 505-509, DOI: 10.1061/(ASCE)1084-0699(2008)13:6(505).
Schmid, B.H., I. Innocenti, and U. Sanfilippo (2010), Characterizing solute transport with transient storage across a range of flow rates: The evidence of repeated tracer experiments in Austrian and Italian streams, Adv. Water Resour. 33, 11, 1340-1346, DOI: 10.1016/j.advwatres.2010.06.001.
Smith, P., K. Beven, J. Tawn, S. Blazkova, and L. Merta (2006), Dischargedependent pollutant dispersion in rivers: Estimation of aggregated dead zone parameters with surrogate data, Water Resour. Res. 42, W04412, DOI:10.1029/2005WR004008.
Smith, P., K.J. Beven, and J.A. Tawn (2008), Informal likelihood measures in model assessment: Theoretic development and investigation, Adv. Water Resour. 31, 8, 1087-1100, DOI: 10.1016/j.advwatres.2008.04.012.
Sorooshian, S., and J.A. Dracup (1980), Stochastic parameter estimation procedur es for hydrologic rainfall-runoff models: Correlated and heteroscedastic terror cases, Water Resour. Res. 16, 2, 430-442, DOI: 10.1029/WR016i002p00430.
Taylor, G.I. (1954), The dispersion of matter in turbulent flow through a pipe, Proc. Roy. Soc. Lond. A 223, 1155, 446-468, DOI: 10.1098/rspa.1954.0130.
Wallis, S.G, and J.R. Manson (2004), Methods for predicting dispersion coefficients in rivers, Water Manage. 157, 3, 131-141.
Wallis, S., and R. Manson (2005), Modelling solute transport in a small stream Rusing DISCUS, Acta Geophys. Pol. 53, 4, 501-515.
Wallis, S.G., P.C. Young, and K.J. Beven (1989), Experimental investigation of the aggregated dead zone model for longitudinal solute transport in stream channels, ICE Proc. 87, 1, 1-22, DOI: 10.1680/iicep.1989.1450.
Wallis, S.G., A. Piotrowski, P.M. Rowiński, and J.J. Napiórkowski (2007), Prediction of dispersion coefficients in a small stream using Artificial Neural Networks. In: Proc. 32nd IAHR Congress, 1-6 July 2007, Venice, paper B2b-083-O.
Young, P.C. (1984), Recursive Estimation and Time-Series Analysis: An Introduction, Springer-Verlag, Berlin, 300 pp.
Young, P.C., and M. Lees (1993), The Active Mixing Volume (AMV): A new concept in modelling environmental systems. In: V. Barnett and K.F. Turkman (eds.), Statistics for the Environment, Chapter 1, John Wiley & Sons, Chichester, 3-44.
Young, P.C., and S.G. Wallis (1993), Solute transport and dispersion in stream channels. In: K.J. Beven and M.J. Kirkby (eds.), Channel Network Hydrology, John Wiley & Sons, Chichester, 128-173.
DOI :
Cytuj : Eshagh, M. ,Teisseyre, R. ,Lizurek, G. ,Asfahani, J. ,Baddari, K. ,Bose, S. K. ,Romanowicz, R. J. , Modelling of solute transport in rivers under different fflow rates: A case study without transient storage. Acta Geophysica Vol. 61, no. 1/2013
facebook