Journal : Acta Geophysica
Article : Modified logarithmic tachoida applied to sediment transport in a river

Authors :
Yamasaki, K.
Department of Earth and Planetary Sciences, Faculty of Science, Kobe University, Nada, Kobe, Japan, yk2000@kobe-u.ac.jp,
Teisseyre, R.
Institute of Geophysics, Polish Academy of Sciences, Warszawa, Poland, rt@igf.edu.pl,
Herak, M.
University of Zagreb, Faculty of Science and Mathematics, Department of Geophysics, Zagreb, Croatia, herak@irb.hr,
Rosyidi, S. A. P.
Department of Civil Engineering, Muhammadiyah University of Yogyakarta, Yogyakarta, Indonesia, atmaja_sri@umy.ac.id,
Moustafa, S. S. R.
Department of Seismology, National Research Institute of Astronomy and Geophysics, Helwan, Cairo, Egypt, sri@umy.ac.id,
Tenzer, R.
School of Surveying, Faculty of Sciences, University of Otago, Dunedin, New Zealand, robert.tenzer@surveying.otago.ac.nz,
Rabeh, T.
National Research Institute of Astronomy and Geophysics, Cairo, Egypt; Center of Geophysics, Faculty of Science IGIDL, Lisbon University, Lisbon, Portugal, taharabeh@yahoo.com,
Węglarczyk, S.
Cracow University of Technology, Faculty of Environmental Engineering, Kraków, Poland, sweglar@pk.edu.pl,
Huo, Y.
China University of Geosciences, Beijing, China, hyuany@gmail.com,
Shemang, E. M.
Department of Geology, University of Botswana, Gaborone, Botswana, shemae@mopipi.ub.bw,
Meyer, Z.
Department of Geotechnics, West Pomeranian University of Technology, Szczecin, Poland, meyer@ps.pl,
Abstract : In this paper, a modified tachoida is applied to the estimation of sediment transport in a river. Eddy viscosity coefficient at the bottom which satisfied hydrodynamics stability of the flow is related to the sediment concentration. On this basis it was possible to determine the sediment stream in the river based on the bottom sediment composition.

Keywords : river hydrodynamics, sediment flow,
Publishing house : Instytut Geofizyki PAN
Publication date : 2009
Number : Vol. 57, no. 3
Page : 743 – 759

Bibliography
: Ackers, P., and R.W. White (1973), Sediment transport: new approach and analysis, J. Hydraul. Div. 99, HY11, 2041-2060.
Dittrich, A., and K. Koll (1997), Velocity field and resistance of flow over rough surfaces with large and small relative submergence, Int. J. Sediment Res. 12, 3, 21-33.
Frenzen, P., and C.A. Vogel (1995), On the magnitude and apparent range of variation of the von Karman constant in the atmospheric surface layer, Bound.- Layer Meteor. 72, 371-392.
Helmiö, T. (2001), Friction measurements of ice cover: theory and practice in River Päntäneenjoki, 2nd IAHR Symposium on “River, Coastal and Estuarine Morphodynamics”, 10-14 Sep., Obihiro, Japan, 179-187.
Kubrak, E., J. Kubrak, and P.M. Rowiński (2008), Vertical velocity distributions through and above submerged, flexible vegetation, Hydrol. Sci. J. 53, 4, 905-920.
Meyer, Z. (1986), Vertical circulation in density-stratified reservoirs. In: N.P. Cheremisinoff (ed.), Encyclopaedia of Fluid Mechanics. Vol. 2: Dynamics of Single- Fluid Flows and Mixing, Gulf Publishing Co, Houston, TX, 572-636.
Meyer, Z., and A. Krupiński (2008), Sediment transport in the Middle Odra River. Verification of the Ackers-White’s formulae with reference to big flows, Publs. Inst. Geophys. Pol. Acad. Sc. E-10, 406, 109-118.
Meyer, Z., R. Coufal, and W. Kotiasz (1998), Analysis of Flow in Lower Odra River and Sediment Characteristics, Cottbus ICH’E.
Nomicos, G.N. (1956), Effects of sediment load on the velocity field and friction factor of turbulent flow in an open channel, Ph.D. Thesis, California Institute of Technology, Pasadena, CA.
Nowh, M. (1989), The von Kàrmàn coefficient in sediment laden flow, J. Hydraul. Res. 27, 4, 477-499.
Pokrajac, D. (2007), Momentum transfer between a free-surface turbulent flow and a turbulent flow within underlying pours medium, Publs. Inst. Geophys. Pol. Acad. Sc. E-7, 401, 207-222.
Prandtl, L. (1956), Dynamics of Flows, PWN, Warszawa (in Polish, translated from German).
Stone, M.C., and R.H. Hotchkiss (2007), Evaluating velocity measurement techniques in shallow streams, J. Hydraul. Res. 45, 6, 752-762.
Telford, J.W. (1982), A theoretical value for von Karman’s constant, Pure Appl. Geophys. 120, 4, 648-661.
DOI :
Qute : Yamasaki, K. ,Teisseyre, R. ,Herak, M. ,Rosyidi, S. A. P. ,Moustafa, S. S. R. ,Tenzer, R. ,Rabeh, T. ,Węglarczyk, S. ,Huo, Y. ,Shemang, E. M. ,Meyer, Z. ,Meyer, Z. , Modified logarithmic tachoida applied to sediment transport in a river. Acta Geophysica Vol. 57, no. 3/2009
facebook