Nonadditive entropy Sq and nonextensive statistical mechanics: Applications in geophysics and elsewhere

Czasopismo : Acta Geophysica
Tytuł artykułu : Nonadditive entropy Sq and nonextensive statistical mechanics: Applications in geophysics and elsewhere

Autorzy :
Vallianatos, F.
Technological Educational Institute of Crete, Laboratory of Geophysics and Seismology, Crete, Greece, fvallian@chania.teicrete.gr,
Tsallis, C.
Centro Brasileiro de Pesquisas Fisicas and National Institute of Science and Technology for Complex Systems, Rio de Janeiro, Brazil, tsallis@cbpf.br,
Abstrakty : The celebrated Boltzmann-Gibbs (BG) entropy, SBG = -kΣIpiln pi , and associated statistical mechanics are essentially based on hypotheses such as ergodicity, i.e., when ensemble averages coincide with time averages. This dynamical simplification occurs in classical systems (and quantum counterparts) whose microscopic evolution is governed by a positive largest Lyapunov exponent (LLE). Under such circumstances, relevant microscopic variables behave, from the probabilistic viewpoint, as (nearly) independent. Many phenomena exist, however, in natural, artificial and social systems (geophysics, astrophysics, biophysics, economics, and others) that violate ergodicity. To cover a (possibly) wide class of such systems, a generalization (nonextensive statistical mechanics) of the BG theory was proposed in 1988. This theory is based on nonadditive entropies such as Sq=k 1-Σipqi / q-1 (S1=SBG) . Here we comment some central aspects of this theory, and briefly review typical predictions, verifications and applications in geophysics and elsewhere, as illustrated through theoretical, experimental, observational, and computational results.

Słowa kluczowe : nonadditive entropy, nonextensive statistical mechanics, complex systems,
Wydawnictwo : Instytut Geofizyki PAN
Rocznik : 2012
Numer : Vol. 60, no. 3
Strony : 502 – 525
Bibliografia : Abe, S., N.V. Sarlis, E.S. Skordas, H. Tanaka, and P.A. Varotsos (2005), Origin of the usefulness of the natural-time representation of complex time series, Phys. Rev. Lett. 94, 17, 170601, DOI: 10.1103/PhysRevLett.94.170601.
Afsar, O., and U. Tirnakli (2010), Probability densities for the sums of iterates of the sine-circle map in the vicinity of the quasiperiodic edge of chaos, Phys. Rev. E 82, 4, 046210, DOI: 10.1103/PhysRevE.82.046210.
ALICE Collaboration, K. Aamodt, N. Abel, U. Abeysekara, A. Abrahantes Quintana, A. Abramyan, D. Adamová, M.M. Aggarwal, G. Aglieri Rinella, and A.G. Agocs, et al. (2011), Production of pions, kaons and protons in pp collisions at s = 900 GeV with ALICE at the LHC, Eur. Phys. J. C 71, 6, 1655, DOI: 10.1140/epjc/s10052-011-1655-9.
Añaños, G.F.J., and C. Tsallis (2004), Ensemble averages and nonextensivity at the edge of chaos of one-dimensional maps, Phys. Rev. Lett. 93, 2, 020601, DOI: 10.1103/PhysRevLett.93.020601.
Añaños, G.F.J., F. Baldovin, and C. Tsallis (2005), Anomalous sensitivity to initial conditions and entropy production in standard maps: Nonextensive approach, Eur. Phys. J. B 46, 3, 409-417, DOI: 10.1140/epjb/e2005-00269-1.
Anastasiadis, A.D., and G.D. Magoulas (2004), Nonextensive statistical mechanics for hybrid learning of neural networks, Physica A 344, 3-4, 372-382, DOI: 10.1016/j.physa.2004.06.005.
Anastasiadis, A.D., M.P. de Albuquerque, M.P. de Albuquerque, and D.B. Mussi (2010), Tsallis q-expo-nential describes the distribution of scientific citations – a new characterization of the impact, Scientometrics 83, 1, 205-218, DOI: 10.1007/s11192-009-0023-0.
Andrade, Jr., J.S., G.F.T. da Silva, A.A. Moreira, F.D. Nobre, and E.M.F. Curado (2010), Thermostatistics of overdamped motion of interacting particles, Phys. Rev. Lett. 105, 26, 260601, DOI: 10.1103/PhysRevLett.105.260601.
Andricioaei, I., and J.E. Straub (1996), Generalized simulated annealing algorithms using Tsallis statistics: Application to conformational optimization of a tetrapeptide, Phys. Rev. E 53, 4, R3055-R3058, DOI: 10.1103/ Phys-RevE.53.R3055.
Anteneodo, C., and C. Tsallis (1998), Breakdown of the exponential sensitivity to the initial conditions: Role of the range of the interaction, Phys. Rev. Lett. 80, 24, 5313-5316, DOI: 10.1103/PhysRevLett.80.5313.
Arevalo, R., A. Garcimartin, and D. Maza (2007), Anomalous diffusion in silo drainage, Eur. Phys. J. E 23, 191-198, DOI: 10.1140/epje/i2006-10174-1.
ATLAS Collaboration (2010), Charged-particle multiplicities in pp interactions at √s = 900 GeV measured with the ATLAS detector at the LHC, Phys. Letter. B 688, 1, 21-42, DOI: 10.1016/j.physletb.2010.03.064.
Bakar, B., and U. Tirnakli (2010), Return distributions in dog-flea model revisited, Physica A 389, 17, 3382-3386, DOI: 10.1016/j.physa.2010.04.037.
Balasis, G., I.A. Daglis, C. Papadimitriou, M. Kalimeri, A. Anastasiadis, and K. Eftaxias (2009), Investigating dynamical complexity in the magnetosphere using various entropy measures, J. Geophys. Res. 114, A00D06, DOI: 10.1029/2008JA014035.
Baldovin, F., and A. Robledo (2004), Nonextensive Pesin identity: Exact renormalization group analytical results for the dynamics at the edge of chaos of the logistic map, Phys. Rev. E 69, 045202(R), DOI: 10.1103/PhysRevE.69.045202.
Baris Bağci, G., and U. Tirnakli (2009), Self-organization in dissipative optical lattices, Chaos 19, 3, 033113, DOI: 10.1063/1.3194107.
Beck, C., and E.G.D. Cohen (2003), Superstatistics, Physica A 322, 1, 267-275, DOI: 10.1016/S0378-4371.
Bediaga, I., E.M.F. Curado, and J.M. de Miranda (2000), A nonextensive thermodynamical equilibrium approach in e+e- → hadrons, Physica A 286, 156-163, DOI: 10.1016/S0378-4371(00)00368-X.
Biró, T.S., G. Purcsel, and K. Ürmössy (2009), Non-extensive approach to quark matter, Eur. Phys. J. A 40, 3, 325-340, DOI: 10.1140/epja/i2009-10806-6.
Boghosian, B.M. (1996), Thermodynamic description of the relaxation of twodimensional turbulence using Tsallis statistics, Phys. Rev. E 53, 5, 4754-4763, DOI: 10.1103/PhysRevE.53.4754.
Bologna, M., C. Tsallis, and P. Grigolini (2000), Anomalous diffusion associated with nonlinear fractional derivative Fokker-Planck-like equation: Exact time-dependent solutions, Phys. Rev. E 62, 2, 2213-2218, DOI: 10.1103/PhysRevE.62.2213.
Boon, J.P., and C. Tsallis (eds.) (2005), Nonextensive Statistical Mechanics: New Trends, New Perspectives. Special Issue, Europhys. News 36, 6, DOI: 10.1051/epn:2005601.
Borges, E.P. (2004), Empirical nonextensive laws for the county distribution of total personal income and gross domestic product, Physica A 334, 255-266, DOI: 10.1016/j.physa.2003.11.003.
Borges, E.P., C. Tsallis, G.F.J. Ananos, and P.M.C. de Oliveira (2002), Nonequilibrium probabilistic dynamics at the logistic map edge of chaos, Phys. Rev. Lett. 89, 254103, DOI: 10.1103/PhysRevLett.89.254103.
Borland, L. (2002), Option pricing formulas based on a non-Gaussian stock price model, Phys. Rev. Lett. 89, 098701, DOI: 10.1103/PhysRevLett.89.098701.
Borland, L. (2005), Long-range memory and nonextensivity in financial markets, Europhys. News 36, 6, 228-231, DOI: 10.1051/epn:2005615.
Borland, L., and J.-P. Bouchaud (2004), A non-Gaussian option pricing model with skew, Quant. Finance 7, 6, 703, DOI: 10.1080/14697680701790014.
Budde, C., D. Prato, and M. Ré (2001), Superdiffusion in decoupled continuous time random walks, Phys. Lett. A 283, 5-6, 309-312, DOI: 10.1016/S0375-9601(01)00234-1.
Burlaga, L.F., and N.F. Ness (2011), Transition from the sector zone to the unipolar zone in the heliosheath: Voyager 2 magnetic field observations, Astrophys. J. 737, 1, 35, DOI: 10.1088/0004-637X/737/1/35.
Burlaga, L.F., and A.F. Viñas (2005), Triangle for the entropic index q of nonextensive statistical mechanics observed by Voyager 1 in the distant heliosphere, Physica A 356, 1-2, 375-384, DOI: 10.1016/j.physa.2005.06.065.
Caride, A.O., C. Tsallis, and S.I. Zanette (1983), Criticality of the anisotropic quantum Heisenberg model on a self-dual hierarchical lattice, Phys. Rev. Lett. 51, 3, 145-147, DOI: 10.1103/PhysRevLett.51.145.
Caruso, F., and C. Tsallis (2008), Nonadditive entropy reconciles the area law in quantum systems with classical thermodynamics, Phys. Rev. E 78, 2, 021102, DOI: 10.1103/PhysRevE.78.021102.
Caruso, F., A. Pluchino, V. Latora, S. Vinciguerra, and A. Rapisarda (2007), Analysis of self-organized criticality in the Olami-Feder-Christensen model and in real earthquakes, Phys. Rev. E 75, 5, 055101(R), DOI: 10.1103/PhysRevE.75.055101.
Carvalho, J.C., R. Silva, J.D. do Nascimento, and J.R. de Medeiros (2008), Power law statistics and stellar rotational velocities in the Pleiades, Europhys. Lett. 84, 5, 59001, DOI: 10.1209/0295-5075/84/59001.
Carvalho, J.C., J.D. do Nascimento, R. Silva, and J.R. De Medeiros (2009), Nongaussian statistics and stellar rotational velocities of main-sequence field stars, Astrophys. J. Lett. 696, 1, L48, DOI: 10.1088/0004-637X/696/1/L48.
Celikoglu, A., U. Tirnakli, and S.M. Duarte Queirós (2010), Analysis of return distributions in the coherent noise model, Phys. Rev. E 82, 2, 021124, DOI: 10.1103/PhysRevE.82.021124.
CMS Collaboration (2010), Transverse-momentum and pseudorapidity distributions of charged hadrons in pp collisions at s = 7 TeV, Phys. Rev. Lett. 105, 2, 022002, DOI: 10.1103/PhysRevLett.105.022002.
Curado, E.M.F., and C. Tsallis (1991), Generalized statistical mechanics: connection with thermodynamics, J. Phys. A 24, L69-L72, DOI: 10.1088/0305-4470/24/2/004 (Corrigenda: DOI: 10.1088/0305-4470/25/4/038).
Daniels, K.E., C. Beck, and E. Bodenschatz (2004), Defect turbulence and generalized statistical mechanics, Physica D 193, 1-4, 208-217, DOI: 10.1016/j.physd.2004.01.033.
De Souza, A.M.C., and C. Tsallis (1997), Student’s t- and r-distributions: Unified derivation from an entropic variational principle, Physica A, 236, 1-2, 52-57, DOI: 10.1016/S0378-4371(96)00395-0.
De Voe, R.G. (2009), Power-law distributions for a trapped ion interacting with a classical buffer gas, Phys. Rev. Lett. 102, 6, 063001, DOI: 10.1103/PhysRevLett.102.063001.
dos Santos, B.C., and C. Tsallis (2010), Time evolution towards q-Gaussian stationary states through unified Itô-Stratonovich stochastic equation, Phys. Rev. E 82, 6, 061119, DOI: 10.1103/PhysRevE.82.061119.
Douglas, P., S. Bergamini, and F. Renzoni (2006), Tunable Tsallis distributions in dissipative optical lattices, Phys. Rev. Lett. 96, 11, 110601, DOI: 10.1103/PhysRevLett.96.110601.
Duarte Queirós, S.M. (2005a), On non-Gaussianity and dependence in financial in time series: A nonextensive approach, Quant. Finance 5, 5, 475-487, DOI: 10.1080/14697680500244403.
Duarte Queirós, S.M. (2005b), On the emergence of a generalised Gamma distribution. Application to traded volume in financial markets, Europhys. Lett. 71, 3, 339, DOI: 10.1209/epl/i2005-10109-0.
Eftaxias, K. (2010), Footprints of nonextensive Tsallis statistics, selfaffinity and universality in the preparation of the L’Aquila earthquake hidden in a pre-seismic EM emission, Physica A 389, 1, 133-140, DOI: 10.1016/j.physa.2009.08.034.
Esquivel, A., and A. Lazarian (2010), Tsallis statistics as a tool for studying interstellar turbulence, Astrophys. J. 710, 1, 125, DOI: 10.1088/0004-637X/710/1/125.
Ferrero, J.C. (2011), A statistical analysis of stratification and inequity in the income distribution, Eur. Phys. J. B 80, 2, 255-261, DOI: 10.1140/epjb/e2011-11018-2.
Ferri, G.L., M.F. Reynoso Savio, and A. Plastino (2010), Tsallis q-triplet and the ozone layer, Physica A 389, 9, 1829-1833, DOI: 10.1016/j.physa.2009.12.020.
Frank, T.D. (2011), Stochastic processes and mean field systems defined by nonlinear Markov chains: An illustration for a model of evolutionary population dynamics, Braz. J. Phys. 41, 2-3, 129-134, DOI: 10.1007/s13538-011-0024-3.
Fuentes, M.A., Y. Sato, and C. Tsallis (2011), Sensitivity to initial conditions, entropy production, and escape rate at the onset of chaos, Phys. Lett. A 375, 33, 2988-2991, DOI: 10.1016/j.physleta.2011.06.039.
Fuks, D., S. Dorfman, K.C. Mundim, and D.E. Ellis (2001), Stochastic molecular dynamics in simulations of metalloid impurities in metals, Int. J. Quant. Chem. 85, 4-5, 354-367, DOI: 10.1002/qua.1533.
Gell-Mann, M., and C. Tsallis (eds.) (2004), Nonextensive Entropy Interdisciplinary Applications, Oxford University Press, New York.
Gutterres, R.F., M. Argollo de Menezes, C.E. Fellows, and O. Dulieu (1999), Generalized simulated annealing method in the analysis of atom-atom interaction, Chem. Phys. Lett. 300, 1-2, 131-139, DOI: 10.1016/S0009-2614(98)01243-3.
Hahn, M.G., X. Jiang, and S. Umarov (2010), On q-Gaussians and exchangeability, J. Phys. A 43, 16, 165208, DOI: 10.1088/1751-8113/43/16/165208.
Hanel, R., and S. Thurner (2011), A comprehensive classification of complex statistical systems and an axiomatic derivation of their entropy and distribution functions, Europhys. Lett. 93, 2, 20006, DOI: 10.1209/0295-5075/93/20006.
Hanel, R., S. Thurner, and C. Tsallis (2009), Limit distributions of scale-invariant probabilistic models of correlated random variables with the q-Gaussian as an explicit example, Eur. Phys. J. B 72, 2, 263-268, DOI: 10.1140/epjb/e2009-00330-1.
Hanel, R., S. Thurner, and M. Gell-Mann (2011), Generalized entropies and the transformation group of superstatistics, Proc. Nat. Acad. Sci. USA 108, 16, 6390-6394, DOI: 10.1073/pnas.1103539108.
Hansmann, U.H.E., M. Masuya, and Y. Okamoto (1997), Characteristic temperatures of folding of a small peptide, Proc. Natl. Acad. Sci. USA 94, 20, 10652-10656, DOI: 10.1073/pnas.94.20.10652.
Hilhorst, H.J. (2009), Central limit theorems for correlated variables: some critical remarks, Braz. J. Phys. 39, 2A, 371-379.
Hilhorst, H.J. (2010), Note on a q-modified central limit theorem, J. Stat. Mech. 2010, P10023, DOI: 10.1088/1742-5468/2010/10/P10023.
Hilhorst, H.J., and G. Schehr (2007), A note on q-Gaussians and non-Gaussians in statistical mechanics, J. Stat. Mech. 2007, P06003, DOI: 10.1088/1742-5468/2007/06/P06003.
Jauregui, M., and C. Tsallis (2010), New representations of π and Dirac delta using the nonextensive-statistical-mechanics q-exponential function, J. Math. Phys. 51, 6, 063304, DOI: 10.1063/1.3431981.
Jauregui, M., and C. Tsallis (2011), q-generalization of the inverse Fourier transform, Phys. Lett. A 375, 21, 2085-2088, DOI: 10.1016/j.physleta.2011.04.014.
Jauregui, M., C. Tsallis, and E.M.F. Curado (2011), q-moments remove the degeneracy associated with the inversion of the q-Fourier transform, J. Stat. Mech. 2011, P10016, DOI: 10.1088/1742-5468/2011/10/P10016.
Kim, J., and J.E. Straub (2009), Optimal replica exchange method combined with Tsallis weight sampling, J. Chem. Phys. 130, 14, 144114, DOI: 10.1063/1.3108523.
Leo, M., R.A. Leo, and P. Tempesta (2010), Thermostatistics in the neighborhood of the π-mode solution for the Fermi-Pasta-Ulam β system: From weak to strong chaos, J. Stat. Mech. 2010, P04021, DOI: 10.1088/1742-5468/2010/04/P04021.
Liu, B., and J. Goree (2008), Superdiffusion and non-Gaussian statistics in a drivendissipative 2D dusty plasma, Phys. Rev. Lett. 100, 5, 055003, DOI: 10.1103/PhysRevLett.100.055003.
Livadiotis, G., and D.J. McComas (2009), Beyond kappa distributions: Exploiting Tsallis statistical mechanics in space plasmas, J. Geophys. Res. 114, A11105, DOI: 10.1029/2009JA014352.
Livadiotis, G., D.J. McComas, M.A. Dayeh, H.O. Funsten, and N.A. Schwadron (2011), First sky map of the inner heliosheath temperature using IBEX spectra, Astrophys. J. 734, 1, DOI: 10.1088/0004-637X/734/1/1.
Lucena, L.S., L.R. da Silva, and C. Tsallis (1995), Departure from Boltzmann-Gibbs statistics makes the hydrogen-atom specific heat a computable quantity, Phys. Rev. E 51, 6, 6247-6249, DOI: 10.1103/PhysRevE.51.6247.
Ludescher, J., C. Tsallis, and A. Bunde (2011), Universal behaviour of interoccurrence times between losses in financial markets: An analytical description, Europhys. Lett. 95, 6, 68002, DOI: 10.1209/0295-5075/95/68002.
Lutz, E. (2003), Anomalous diffusion and Tsallis statistics in an optical lattice, Phys. Rev. A 67, 5, 051402(R), DOI: 10.1103/PhysRevA.67.051402.
Lyra, M.L., and C. Tsallis (1998), Nonextensivity and multifractality in lowdimensional dissipative systems, Phys. Rev. Lett. 80, 1, 53-56, DOI: 10.1103/PhysRevLett.80.53.
Mattedi, A.P., F.M. Ramos, R.R. Rosa, and R.N. Mantegna (2004), Value-at-risk and Tsallis statistics: Risk analysis of the aerospace sector, Physica A 344, 3-4, 554-561, DOI: 10.1016/j.physa.2004.06.031.
Mohanalin, J., Beenamol, P.K. Kalra, and N. Kumar (2010), A novel automatic microcalcification detection technique using Tsallis entropy and a type II fuzzy index, Comput. Math. Appl. 60, 8, 2426-2432, DOI: 10.1016/j.camwa.2010.08.038.
Montemurro, M.A. (2004), A generalization of the Zipf-Mandelbrot law in linguistics. In: M. Gell-Mann and C. Tsallis (eds.), Nonextensive Entropy – Interdisciplinary Applications, Oxford University Press, New York.
Moret, M.A., P.G. Pascutti, P.M. Bisch, M.S.P. Mundim, and K.C. Mundim (2006), Classical and quantum conformational analysis using Generalized Genetic Algorithm, Physica A 363, 2, 260-268, DOI: 10.1016/j.physa.2005.08.062.
Moyano, L.G., and C. Anteneodo (2006), Diffusive anomalies in a long-range Hamiltonian system, Phys. Rev. E 74, 021118, DOI: 10.1103/PhysRevE.74.021118.
Moyano, L.G., C. Tsallis, and M. Gell-Mann (2006), Numerical indications of a q-generalised central limit theorem, Europhys. Lett. 73, 6, 813, DOI: 10.1209/epl/i2005-10487-1.
Mundim, K.C., and C. Tsallis (1996), Geometry optimization and conformational analysis through generalized simulated annealing, Int. J. Quant. Chem. 58, 4, 373-381, DOI: 10.1002/(SICI)1097-461X(1996)58:4<373::AID-QUA6>3.0.CO;2-V.
Nobre, F.D., and C. Tsallis (1995), Infinite-range Ising ferromagnet: thermodynamic limit within generalized statistical mechanics, Physica A 213, 3, 337-356, DOI: 10.1016/0378-4371(94)00231-H (Erratum: DOI: 10.1016/0378-4371(95)00073-G).
Nobre, F.D., M.A. Rego-Monteiro, and C. Tsallis (2011), Nonlinear relativistic and quantum equations with a common type of solution, Phys. Rev. Lett. 106, 14, 140601, DOI: 10.1103/PhysRevLett.106.140601.
Okamoto, Y., and U.H.E. Hansmann (2001), Protein folding simulations by a generalized-ensemble algorithm based on Tsallis statistics. In: S. Abe and Y. Okamoto (eds.), Nonextensive Statistical Mechanics and Its Applications, Series Lecture Notes in Physics, Springer, Heidelberg.
Oliveira-Neto, N.M., E.M.F. Curado, F.D. Nobre, and M.A. Rego-Monteiro (2007), A simple model to describe the low-temperature behaviour of some atoms and molecules: An application to the hydrogen atom, J. Phys. B 40, 11, 1975, DOI: 10.1088/0953-4075/40/11/003.
Papadimitriou, C., M. Kalimeri, and K. Eftaxias (2008), Nonextensivity and universality in the earthquake preparation process, Phys. Rev. E 77, 3, 036101, DOI: 10.1103/PhysRevE.77.036101.
Penrose, O. (1970), Foundations of Statistical Mechanics: A Deductive Treatment, Pergamon, Oxford.
Pickup, R.M., R. Cywinski, C. Pappas, B. Farago, and P. Fouquet (2009), Generalized spin glass relaxation, Phys. Rev. Lett. 102, 9, 097202, DOI: 10.1103/PhysRevLett.102.097202.
Plastino, A.R., and A. Plastino (1995), Non-extensive statistical mechanics and generalized Fokker-Planck equation, Physica A 222, 1-4, 347-354, DOI: 10.1016/0378-4371(95)00211-1.
Pluchino, A., A. Rapisarda, and C. Tsallis (2008), A closer look at the indications of q-generalized Central Limit Theorem behavior in quasi-stationary states of the HMF model, Physica A 387, 13, 3121-3128, DOI: 10.1016/j.physa. 2008.01.112.
Portes de Albuquerque, M., I.A. Esquef, A.R.G. Mello, and M. Portes de Albuquerque (2004), Image thresholding using Tsallis entropy, Pattern Recogn. Lett. 25, 9, 1059-1065, DOI: 10.1016/j.patrec.2004.03.003.
Reis, Jr., J.L., J. Amorim, and A. Dal Pino, Jr. (2011), Occupancy of rotational population in molecular spectra based on nonextensive statistics, Phys. Rev. E 83, 1, 017401, DOI: 10.1103/PhysRevE.83.017401.
Rios, L.A., and R.M.O. Galvão (2011), Modulation of whistler waves in nonthermal plasmas, Phys. Plasmas 18, 2, 022311, DOI: 10.1063/1.3556125.
Rodríguez, A., and C. Tsallis (2010), A generalization of the cumulant expansion. Application to a scale-invariant probabilistic model, J. Math. Phys. 51, 7, 073301, DOI: 10.1063/1.3448944.
Rodríguez, A., V. Schwämmle, and C. Tsallis (2008), Strictly and asymptotically scale-invariant probabilistic models of N correlated binary random variables having q-Gaussians as N → ∞ limiting distributions, J. Stat. Mech. P09006, DOI: 10.1088/1742-5468/2008/09/P09006.
Rosso, O.A., M.T. Martin, and A. Plastino (2003), Brain electrical activity analysis using wavelet-based informational tools (II): Tsallis non-extensivity and complexity measures, Physica A 320, 497-511, DOI: 10.1016/S0378-4371 (02)01529-7.
Saguia, A., and M.S. Sarandy (2010), Nonadditive entropy for random quantum spin-S chains, Phys. Lett. A 374, 34, 3384-3388, DOI: 10.1016/j.physleta. 2010.06.038.
Serra, P., A.F. Stanton, and S. Kais (1997), Pivot method for global optimization, Phys. Rev. E 55, 1, 1162-1165, DOI: 10.1103/PhysRevE.55.1162.
Shao, M., L. Yi, Z. Tang, H. Chen, C. Li, and Z. Xu (2010), Examination of the species and beam energy dependence of particle spectra using Tsallis statistics, J. Phys. G 37, 8, 085104, DOI: 10.1088/0954-3899/37/8/085104.
Shi, W., Y. Miao, Z. Chen, and H. Zhang (2009), Research of automatic medical image segmentation algorithm based on Tsallis entropy and improved PCNN. In: IEEE International Conference on Mechatronics and Automation, ICMA 2009, 1004-1008, DOI: 10.1109/ICMA.2009.5246315.
Sotolongo-Grau, O., D. Rodriguez-Perez, J.C. Antoranz, and O. Sotolongo-Costa (2010), Tissue radiation response with maximum Tsallis entropy, Phys. Rev. Lett. 105, 15, 158105, DOI: 10.1103/PhysRevLett.105.158105.
Straub, J.E., and I. Andricioaei (1999), Computational methods inspired by Tsallis statistics: Monte Carlo and molecular dynamics algorithms for the simulation of classical and quantum systems, Braz. J. Phys. 29, 1, 179, DOI: 10.1590/S0103-97331999000100016.
Takahashi, T., H. Oono, and M.H.B. Radford (2007), Empirical estimation of consistency parameter in intertemporal choice based on Tsallis’ statistics, Physica A 381, 338-342, DOI: 10.1016/j.physa.2007.03.038.
Takahashi, T., T. Hadzibeganovic, S.A. Cannas, T. Makino, H. Fukui, and S. Kitayama (2009), Cultural neuroeconomics of intertemporal choice, Neuroendocrinol. Lett. 30, 2, 185-191.
Tamarit, F.A., S.A. Cannas, and C. Tsallis (1998), Sensitivity to initial conditions in the Bak-Sneppen model of biological evolution, Eur. Phys. J. B 1, 4, 545-548, DOI: 10.1007/s100510050217.
Telesca, L. (2010a), Nonextensive analysis of seismic sequences, Physica A 389, 9, 1911-1914, DOI: 10.1016/j.physa.2010.01.012.
Telesca, L. (2010b), Analysis of Italian seismicity by using a nonextensive approach, Tectonophysics 494, 155-162, DOI: 10.1016/j.tecto.2010.09.012.
Tempesta, P. (2011), Group entropies, correlation laws, and zeta functions, Phys. Rev. E 84, 021121, DOI: 10.1103/PhysRevE.84.021121.
Thistleton, W.J., J.A. Marsh, K.P. Nelson, and C. Tsallis (2009), q-Gaussian approximants mimic non-extensive statistical-mechanical expectation for many-body probabilistic model with long-range correlations, Cent. Eur. J. Phys. 7, 3, 387-394, DOI: 10.2478/s11534-009-0054-4.
Thurner, S., and C. Tsallis (2005), Nonextensive aspects of self-organized scalefree gas-like networks, Europhys. Lett. 72, 2, 197, DOI: 10.1209/epl/i2005-10221-1.
Tirnakli, U., and S. Abe (2004), Aging in coherent noise models and natural time, Phys. Rev. E 70, 5, 056120, DOI: 10.1103/PhysRevE.70.056120.
Tirnakli, U., C. Beck, and C. Tsallis (2007), Central limit behavior of deterministic dynamical systems, Phys. Rev. E 75, 4, 040106(R), DOI: 10.1103/PhysRevE.75.040106.
Tirnakli, U., C. Tsallis, and C. Beck (2009), A closer look on the time-average attractor at the edge of chaos of the logistic map, Phys. Rev. E 79, 5, 056209, DOI: 10.1103/PhysRevE.79.056209.
Tong, S., A. Bezerianos, J. Paul, Y. Zhu, and N. Thakor (2002), Nonextensive entropy measure of EEG following brain injury from cardiac arrest, Physica A 305, 3-4, 619-628, DOI: 10.1016/S0378-4371(01)00621-5.
Treumann, R.A. (1998), Generalized-Lorentziann path integrals, Phys. Rev. E 57, 5, 5150-5153, DOI: 10.1103/PhysRevE.57.5150.
Tsallis, A.C., C. Tsallis, A.C.N. Magalhaes, and F.A. Tamarit (2003), Human and computer learning: An experimental study, Complexus 1, 4, 181-189, DOI: 10.1159/000082448.
Tsallis, C. (1988), Possible generalization of Boltzmann-Gibbs statistics, J. Stat. Phys. 52, 1-2, 479-487, DOI: 10.1007/BF01016429.
Tsallis, C. (2004), Nonextensive statistical mechanics: Construction and physical interpretation. In: M. Gell-Mann and C. Tsallis (eds.), Nonextensive Entropy – Interdisciplinary Applications, Oxford University Press, New York.
Tsallis, C. (2005), Nonextensive statistical mechanics, anomalous diffusion and central limit theorems, Milan J. Math. 73, 1, 145-176, arXiv:cond-mat/0412132v1.
Tsallis, C. (2009a), Introduction to Nonextensive Statistical Mechanics –Approaching a Complex World, Springer, New York, DOI: 10.1007/978-0-387-85359-8.
Tsallis, C. (2009b), Entropy. In: R.A. Meyers (ed.), Encyclopedia of Complexity and Systems Science, Springer, Berlin.
Tsallis, C. (2011), The nonadditive entropy Sq and its applications in physics and elsewhere: Some remarks, Entropy 13, 10, 1765-1804, DOI: 10.3390/e13101765.
Tsallis, C., and D.J. Bukman (1996), Anomalous diffusion in the presence of external forces: Exact time-dependent solutions and their thermostatistical basis, Phys. Rev. E 54, R2197-R2200, DOI: 10.1103/PhysRevE.54.R2197.
Tsallis, C., and M.P. Portes de Albuquerque (2000), Are citations of scientific papers a case of nonextensivity?, Eur. Phys. J. B 13, 777, DOI: 10.1007/s100510050097.
Tsallis, C., and D.A. Stariolo (1996), Generalized simulated annealing, Physica A 233, 395-406.
Tsallis, C., R.S. Mendes, and A.R. Plastino (1998), The role of constraints within generalized nonextensive statistics, Physica A 261, 3, 534-554, DOI: 10.1016/S0378-4371(98)00437-3.
Tsallis, C., M. Gell-Mann, and Y. Sato (2005), Asymptotically scale-invariant occupancy of phase space makes the entropy Sq extensive, Proc. Natl. Acad. Sci. USA 102, 43, 15377-15382, DOI: 10.1073/pnas.0503807102.
Tsallis, C., A.R. Plastino, and R.F. Alvarez-Estrada (2009), Escort mean values and the characterization of power-law-decaying probability densities, J. Math. Phys. 50, 4, 043303, DOI: 10.1063/1.3104063.
Umarov, S., C. Tsallis, and S. Steinberg (2008), On a q-central limit theorem consistent with nonextensive statistical mechanics, Milan J. Math. 76, 307-328, DOI: 10.1007/s00032-008-0087-y.
Umarov, S., C. Tsallis, M. Gell-Mann, and S. Steinberg (2010), Generalization of symmetric α-stable Lévy distributions for q > 1, J. Math. Phys. 51, 3, 033502, DOI: 10.1063/1.3305292.
Upadhyaya, A., J.-P. Rieu, J.A. Glazier, and Y. Sawada (2001), Anomalous diffusion and non-Gaussian velocity distribution of Hydra cells in cellular aggregates, Physica A 293, 3-4, 549-558, DOI: 10.1016/S0378-4371(01) 00009-7.
Vallianatos, F. (2009), A non-extensive approach to risk assessment, Nat. Hazards Earth Syst. Sci. 9, 1, 211-216, DOI: 10.5194/nhess-9-211-2009.
Vallianatos, F. (2011), A non-extensive statistical physics approach to the polarity reversals of the geomagnetic field, Physica A 390, 10, 1773-1778, DOI: 10.1016/j.physa.2010.12.040.
Vallianatos, F., and P. Sammonds (2010), Is plate tectonics a case of non-extensive thermodynamics?, Physica A 389, 21, 4989-4993, DOI: 10.1016/j.physa. 2010.06.056.
Vallianatos, F., E. Kokinou, and P. Sammonds (2011a), Non-extensive statistical physics approach to fault population distribution. A case study from the Southern Hellenic Arc (Central Crete), Acta Geophys. 59, 4, 770-784, DOI: 10.248/s11600-011-0015-3.
Vallianatos, F., D. Triantis, and P. Sammonds (2011b), Non-extensivity of the isothermal depolarization relaxation currents in uniaxial compressed rocks, Europhys. Lett. 94, 6, 68008, DOI: 10.1209/0295-5075/94/68008.
Vignat, C., and A. Plastino (2007), Central limit theorem and deformed exponentials, J. Phys. A: Math. Theor. 40, 45, F969-F978, DOI: 10.1088/1751-8113/40/45/F02.
Vignat, C., and A. Plastino (2009), Geometry of the central limit theorem in the nonextensive case, Phys. Lett. A 373, 20, 1713-1718, DOI: 10.1016/j.physleta.2009.03.029.
Wedemann, R.S., R. Donangelo, and L.A.V. de Carvalho (2009), Generalized memory associativity in a network model for the neuroses, Chaos 19, 015116, DOI: 10.1063/1.3099608.
Wilk, G., and Z. Wlodarczyk (2009), Power laws in elementary and heavy-ion collisions – A story of fluctuations and nonextensivity?, Eur. Phys. J. A 40, 3, 299, arXiv: 0810.2939.
DOI :
Cytuj : Vallianatos, F. ,Tsallis, C. , Nonadditive entropy Sq and nonextensive statistical mechanics: Applications in geophysics and elsewhere. Acta Geophysica Vol. 60, no. 3/2012
facebook