Non-extensive framework for earthquakes: the role of fragments

Czasopismo : Acta Geophysica
Tytuł artykułu : Non-extensive framework for earthquakes: the role of fragments

Autorzy :
Vallianatos, F.
Technological Educational Institute of Crete, Laboratory of Geophysics and Seismology, Crete, Greece,,
Tsallis, C.
Centro Brasileiro de Pesquisas Fisicas and National Institute of Science and Technology for Complex Systems, Rio de Janeiro, Brazil,,
Sotolongo-Costa, O.
Catedra de Sistemas Complejos “Henri Poincare”, Universidad de La Habana,,
Abstrakty : The inclusion of fragment-asperity interaction inside tectonic plates to find a frequency magnitude relation for earthquakes, and the need for non-extensive statistics in this case is exposed. The usefulness of this formulation is shown. A comparison with seismic observations is also discussed.

Słowa kluczowe : non-extensivity, statistics, fragmentation,
Wydawnictwo : Instytut Geofizyki PAN
Rocznik : 2012
Numer : Vol. 60, no. 3
Strony : 526 – 534
Bibliografia : Abe, S. (2008), Instability of q-expectation value, arXiv:0806.3934v1 condmat. stat-mech.
Abe, S. (2010), Essential discreteness in generalized thermostatistics with nonlogarithmic entropy, EPL 90, 5, 50004, DOI: 10.1209/0295-5075/90/50004.
Academia Sinica (1974), Catalogue of great earthquakes in China, 780 BC to 1973 AD, Academia Sinica, Inst. Geophys., Beijing, 31 pp. (in Chinese).
Bagci, G.B., T. Oikonomou, and U. Tirnakli (2010), Comment on “Essential discreteness in generalized thermostatistics with non-logarithmic entropy” by S. Abe, arXiv:1006.1284v2 cond-mat.stat-mech.
Bak, P. (1996), How Nature Works: The Science of Self-Organised Criticality, Copernicus Press, New York.
Burridge, R., and L. Knopoff (1967), Model and theoretical seismicity, Bull Seismol. Soc. Am. 57, 3, 341-371.
Cabo, A. (2010), Is the Tsallis q-mean value instable?, arXiv:1010.5825v1 condmat. stat-mech.
De Rubeis, V., R. Hallgass, V. Loreto, G. Paladin, L. Pietronero, and P. Tosi (1996), Self-affine asperity model for earthquakes, Phys. Rev. Lett. 76, 14, 2599-2602, DOI: 10.1103/PhysRevLett.76.2599.
Englman, R., N. Rivier, and Z. Jaeger (1987), Fragment-size distribution in disintegration by maximum-entropy formalism, Philos. Mag. B 56, 6, 751-769, DOI: 10.1080/13642818708215309.
Gutenberg, B., and C.F. Richter (1944), Frequency of earthquakes in California, Bull. Seimol. Soc. Am. 34, 4, 185-188.
Herrmann, H.J., G. Mantica, and D. Bessis (1990), Space-filling bearings, Phys. Rev. Lett. 65, 26, 3223-3226, DOI: 10.1103/PhysRevLett.65.3223.
Ishii, T., and M. Matsushita (1992), Fragmentation of long thin glass rods, J. Phys. Soc. Jpn. 61, 3474-3477, DOI: 10.1143/JPSJ.61.3474.
Lomnitz-Adler, J., and C. Lomnitz (1979), A modified form of the Gutenberg–Richter magnitude-frequency relation, Bull. Seismol. Soc. Am. 69, 4, 1209-1214.
Matsushita, M. (1985), Fractal viewpoint of fracture and accretion, J. Phys. Soc. Jpn. 54, 857-860, DOI: 0.1143/JPSJ.54.857.
Olami, Z., H.J.S. Feder, and K. Christensen (1992), Self-organized criticality in a continuous, nonconservative cellular automaton modeling earthquakes, Phys. Rev. Lett. 68, 8, 1244-1247, DOI: 10.1103/PhysRevLett.68.1244.
Sarlis, N.V., E.S. Skordas, and P.A. Varotsos (2010), Nonextensivity and natural time: The case of seismicity, Phys. Rev. E 82, 2, 021110, DOI: 10.1103/PhysRevE.82.021110.
Silva, R., G.S. França, C.S. Vilar, and J.S. Alcaniz (2006), Nonextensive models for earthquakes, Phys. Rev. E 73, 026102, DOI: 10.1103/PhysRevE.73.026102.
Sotolongo-Costa, O., and A. Posadas (2004), Fragment-asperity interaction model for earthquakes, Phys. Rev. Lett. 92, 4, 048501, DOI: 10.1103/PhysRevLett. 92.048501.
Sotolongo-Costa, O., E. Lopez-Pages, F. Barreras-Toledo, and J. Marin-Antuña (1994), Scaling in drop distributions: An application in combustion, Phys. Rev. E 49, 5, 4027-4030, DOI: 10.1103/PhysRevE.49.4027.
Sotolongo-Costa, O., Y. Moreno-Vega, J.J. Lloveras-González, and J.C. Antoranz (1996), Criticality in droplet fragmentation, Phys. Rev. Lett. 76, 1, 42-45, DOI: 10.1103/PhysRevLett.76.42.
Telesca, L., and C.-C. Chen (2010), Nonextensive analysis of crustal seismicity in Taiwan, Nat. Hazards Earth Syst. Sci. 10, 1293-1297, DOI: 10.5194/nhess-10-1293-2010.
Tsallis, C. (1988), Possible generalization of Boltzmann–Gibbs statistics, J. Stat. Phys. 52, 1-2, 479-487, DOI: 10.1007/BF01016429.
Tsallis, C., S.V.F. Lévy, A.M.C. Souza, and R. Maynard (1995), Statisticalmechanical foundation of the ubiquity of Lévy distributions in nature, Phys. Rev. Lett. 75, 20, 3589-3593, DOI: 10.1103/PhysRevLett.75.3589.
Cytuj : Vallianatos, F. ,Tsallis, C. ,Sotolongo-Costa, O. , Non-extensive framework for earthquakes: the role of fragments. Acta Geophysica Vol. 60, no. 3/2012