Numerical analysis of one-dimensional nonlinear acoustic wave

Czasopismo : Acta Geophysica
Tytuł artykułu : Numerical analysis of one-dimensional nonlinear acoustic wave

Autorzy :
Domański, B.M.
Institute of Geophysics, Polish Academy of Sciences, Warszawa, Poland, bogdan@igf.edu.pl,
Gnyp, A.
Carpathian Branch of Subbotin Institute of Geophysics, National Academy of Sciences of Ukraine, Lviv, Ukraine, gnyp@cb-igph.lviv.ua,
Shanker, D.
Department of Earthquake Engineering, Indian Institute of Technology Roorkee, Roorkee, India, dayasfeq@iitr.ernet.in,
Zheng, H.
Geological Science Department, University of Saskatchewan, Saskatoon, Canada, hs.zheng@usask.ca,
Abstrakty : Numerical investigations on one-dimensional nonlinear acoustic wave with third and fourth order nonlinearities are presented using high-order finite-difference (HFD) operators with a simple flux-limiter (SFL) algorithm. As shown by our nu-merical tests, the HFDSFL method is able to produce more stable, accurate and conservative solutions to the nonlinear acoustic waves than those computed by finite-difference combined with the flux-corrected-transport algorithm. Unlike the linear acoustic waves, the nonlinear acoustic waves have variable phase velocity and waveform both in time-space (t-x) domain and frequency-wavenumber (f-k) domain; of our special interest is the behaviour during the propagation of nonlinear acoustic waves: the waveforms are strongly linked to the type of medium nonlinearities, generation of harmonics, frequency and wavenumber peak shifts. In seismic sense, these characteristics of nonlinear wave will introduce new issues during such seismic processing as Normal Moveout and f-k filter. Moreover, as shown by our numerical experiment for a four-layer model, the nonlinearities of media will introduce extra velocity errors in seismic velocity inversion.

Słowa kluczowe : nonlinear acoustic wave, high-order finite difference, flux limiter,
Wydawnictwo : Instytut Geofizyki PAN
Rocznik : 2007
Numer : Vol. 55, no. 3
Strony : 313 – 323
Bibliografia : Abraham, K., A.T.C. James and P. Johnson, 1996, Frequency spectra of nonlinear elastic pulse-mode waves, J. Acoust. Soc. Am. 100, 1375-1382.
Book, D.L., J.P. Boris and K. Hain, 1975, Flux-corrected transport. II: Generalizations of the method, J. Comput. Phys. 18, 3, 248-283.
Boris, J.P., and D.L. Book, 1973, Flux-corrected transport. I: SHASTA, a fluid transport algorithm that works, J. Comput. Phys. 11, 1, 38-69.
Boris, J.P., and D.L. Book, 1976, Flux-corrected transport. III: Minimal-error FCT algorithms, J. Comput. Phys. 20, 4, 397-431.
Cheng, N.Y., 1996, Nonlinear wave propagation in sandstone: A numerical study, Geophysics 61, 6, 1935-1938.
Chun, Y.D., and Y.H. Kim, 2000, Numerical analysis for nonlinear resonant oscillations of gas in axisymmetric closed tubes, J. Acoust. Soc. Am. 108, 2765-2774.
Engelbrecht, J., 1988, Nonlinear Wave Processes of Deformation in Solids, Pitman Publishing Inc, Massachusetts, 18-21.
Fjar, E., R.M. Holt, P. Horsrud, A.M. Raaen and R. Risnes, 1992, Petroleum Related Rock Mechanics, Elsevier, Amsterdam.
Hokstad, K., 2004, Nonlinear and dispersive acoustic wave propagation, Geophysics 69, 840-848.
Holberg, O., 1987, Computational aspects of the choice of operator and sampling interval for numerical differentiation in large-scale simulation of wave phenomena, Geophys. Prosp. 35, 629-655.
Johnson, P.A., and K.R. McCall, 1994, Observation and implications of nonlinear elastic wave response in rock, Geophys. Res. Let. 21, 165-168.
Johnson, P.A., and T.J. Shankland, 1989, Nonlinear generation of elastic waves in granite and sandstone: continuous wave and traveltime observations, J. Geophys. Res. 94, 17729-17734.
Johnson, P.A., T.J. Shankland, R.J. O'Connell and J.N. Albright, 1987, Nonlinear generation of elastic waves in crystalline rock, J. Geophys. Res. 92, 3597-3602.
Landau, K.R., and E.M. Lifshitz, 1986, Theory of Elasticity, Pergamon Press, Oxford. McCall, K.R., 1994, Theoretical study of nonlinear elastic wave propagation, J. Geophys. Res. 99, 2591-2600.
Murnaghan, F.D., 1957, Finite Deformation of an Elastic Solid, J. Wiley & Sons, New York.
Qian, Z.W., 1995, Nonlinear Acoustics, Science Press, Beijing.
Sinha, B.K., and K.W. Winkler, 1999, Formation nonlinear constants from sonic measurements at two borehole pressures, Geophysics 64, 6, 1890-1900.
Van Den Abeele, K.E., A. Sutin, J.C. Carmeliet and P.A. Johnson, 2001, Micro-damage diagnostics using nonlinear elastic wave spectroscopy, NDT&E Intern. 34, 239-248.
Xue, M., 2000, High-order monotonic numerical diffusion and smoothing, Monthly Weath. Rev. 128, 2853-2864.
Zheng, H.S., and Z.J. Zhang, 2005, Numerical modeling of the nonlinear elastic waves in transverse isotropic (VTI) media, Chinese J. Geophys. 48, 3, 660-671.
Zheng, H.S., Z.J. Zhang and B.J. Yang, 2004, A numerical study of 1-D nonlinear P-wave propagation in solid, Acta Seism. Sinica 17, 1, 80-86.
Zheng, H.S., Z.J. Zhang and E.R. Liu, 2006a, Non-linear seismic wave propagation in anisotropic media using the flux-corrected transport technique, Geophys. J. Intern. 165, 3, 943-956.
Zheng, H.S., Z.J. Zhang and X.B. Tian, 2006b, Seismic wave frequency and bandwidth changes induced by the nonlinearity in VTI media, Chinese J. Geophysics 49, 3, 776-785.
DOI :
Cytuj : Domański, B.M. ,Gnyp, A. ,Shanker, D. ,Zheng, H. , Numerical analysis of one-dimensional nonlinear acoustic wave. Acta Geophysica Vol. 55, no. 3/2007
facebook