Numerical calculation of cosmic ray ionization rate profiles in the middle atmosphere and lower ionosphere with relation to characteristic energy intervals

Czasopismo : Acta Geophysica
Tytuł artykułu : Numerical calculation of cosmic ray ionization rate profiles in the middle atmosphere and lower ionosphere with relation to characteristic energy intervals

Autorzy :
Vitkulin, A. V.
Institute of Volcanology and Seismology, Far East Branch, Russian Academy of Sciences, Petropavlovsk-Kamchatski, Russia,,
Semenov, V. Y.
Institute of Geophysics, Polish Academy of Sciences, Warszawa, Poland,,
Majewski, E.
Institute of Geophysics, Polish Academy of Sciences, Warszawa, Poland,,
Nenovski, P.
National Institute for Geophysics, Geodesy and Geography, Sofia, Bulgaria,,
Sayil, N.
Karadeniz Technical University, Engineering Faculty, Department of Geophysics, Trabzon, Turkey,,
Nguyen, N. T.
Institute of Marine Geology and Geophysics, Vietnam Academy of Science and Technology, Hanoi, Vietnam,,
Neska, A.
Institute of Geophysics, Polish Academy of Sciences, Warszawa, Poland,,
Tokarczyk, T.
Institute of Meteorology and Water Management, National Research Institute, Wrocław Branch, Wrocław, Poland,,
Asfahani, J.
Geology Department, Atomic Energy Commission, Damascus, Syria,,
Pietruczuk, A.
Institute of Geophysics, Polish Academy of Sciences, Warszawa, Poland,,
Hattermann, F. F.
Potsdam Institute for Climate Impact Research (PIK), Potsdam, Germany,,
Marghany, M.
Institute for Science and Technology Geospatial (INSTeG), University of Technology, Malaysia (UTM), Skudai, Johor Bahru, Malaysia,,
Velinov, P. I. Y.
Space Research and Technology Institute, Bulgarian Academy of Sciences, Sofia, Bulgaria,,
Abstrakty : Numerical calculations of galac tic cosmic ray (GCR) ionization rate profiles are presented for the middle atmosphere and lower iono- sphere altitudes (35-90 km) for the full GCR composition (protons, alpha particles, and groups of heavier nuclei: light L, medium M, heavy H, very heavy VH). This investigation is based on a model developed by Velinov et al. (1974) and Velinov and Mateev (2008), which is further improved in the present paper. Analytical expressions for energy interval contributions are provided. An approximation of the ionization function on three energy intervals is used and for the first time the charge decrease interval for electron capturing (Dorman 2004) is investigated quantitatively. Development in this field of research is important for better understanding the impact of space weather on the atmosphere. GCRs in fluence the ionization and electric parameters in the atmosphere and also the chemical processes (ozone creation and depletion in the stratosphere) in it. The model results show good agreement with experimental data (Brasseur and Solomon 1986, Rosenberg and Lanzerotti 1979, Van Allen 1952).

Słowa kluczowe : galactic cosmic ray ionization, middle atmosphere, lower ionosphere,
Wydawnictwo : Instytut Geofizyki PAN
Rocznik : 2013
Numer : Vol. 61, no. 2
Strony : 494 – 509
Bibliografia : Agostinelli, S., J. Allison, K. Amako, J. Apostolakis, H. Araujo, P. Arcel, M. Asai, D. Axen, S. Banerjee, G. Barrand, F. Behner, L. Bellagamba, J. Boudreau, L. Broglia, A. Brunengo, H. Burkhardt, S. Chauvie, J. Chuma, R. Chytracek, G. Cooperman, G. Cosmo, P. Degtyarenko, A. Dell’Acqua, G. Depaola, D. Dietrich, R. Enami, A. Feliciello, C. Ferguson, H. Fesefeldt, G. Folger, F. Foppiano, A. Forti, S. Garelli, S. Giani, R. Giannitrapani, D. Gibin, J.J. Gómez Cadenas, I. González, G. Gracia Abril, G. Greeniaus, W. Greiner, V. Grichine, A. Grossheim, S. Guatelli, P. Gumplinger, R. Hamatsu, K. Hashimoto, H. Hasui, A. Heikkinen, A. Howard, V. Ivanchenko, A. Johnson, F.W. Jones, J. Kallenbach, N. Kanaya, M. Kawabata, Y. Kawabata, M. Kawaguti, S. Kelner, P. Kent, A. Kimura, T. Kodama, R. Kokoulin, M. Kossov, H. Kurashige, E. Lamanna, T. Lampén, V. Lara, V. Lefebure, F. Lei, M. Liendl, W. Lockman, F. Longo, S. Magni, M. Maire, E. Medernach, K. Minamimoto, P. Mora de Freitas, Y. Morita, K. Murakami, M. Nagamatu, R. Nartallo, P. Nieminen, T. Nishimura, K. Ohtsubo, M. Okamura, S. O’Neale, Y. Oohata, K. Paech, J. Perl, A. Pfeiffer, M.G. Pia, F. Ranjard, A. Rybin, S. Sadilov, E. Di Salvo, G. Santin, T. Sasaki, N. Savvas, Y. Sawada, S. Scherer, S. Sei, V. Sirotenko, D. Smith, N. Starkov, H. Stoecker, J. Sulkimo, M. Takahata, S. Tanaka, E. Tcherniaev, E. Safai Tehrani, M. Tropeano, P. Truscott, H. Uno, L. Urban, P. Urban, M. Verderi, A. Walkden, W. Wander, H. Weber, J.P. Wellisch, T. Wenaus, D.C. Williams, D. Wright, T. Yamada, H. Yoshida, and D. Zschiesche (2003), GEANT4 – a simulation toolkit, Nucl. Instrum. Meth. Phys. Res. A 506, 3, 250-303, DOI: 10.1016/S0168-9002(03)01368-8.
Alexandrov, L., and A. Mishev (2008), Application of afxy-code for parameterization of ionization yield function Y in the atmosphere for primary cosmic ray protons, arXiv:0712.3174
Apanasenko, A.V., V.A. Beresovskaya, M. Fuji, V.I. Galkin, M. Hareyama, M. Ichimura, S. Ito, E. Kamioka, T. Kitami, T. Kobayashi, V.V. Kopenkin, S. Kuramata, Y. Kuriyama, V.I. Lapshin, A.K. Managadze, H. Matsutani, H. Mikami, N.P. Misnikova, R.A. Mukhamedshin, M. Namiki, H. Nanjo, S.N. Nazarov, S.I. Nikolsky, T. Oe, S. Ohta, V.I. Osedlo, D.S. Oshuev, P.A. Publichenko, I.V. Rakovolskaya, T.M. Roganova, M. Saito, G.P. Sazhina, H. Semba, Yu.N. Shabanova, T. Shibata, H. Sugimoto, L.G. Sveshnikova, K. Takahashi, T. Tsutiya, V.M. Taran, N. Yajima, T. Yamagami, K. Yamamoto, I.V. Yashin, E.A. Zamchalova, G.T. Zetsepin, and I.S. Zayarnaya (2001), All particle spectrum observed by RUNJOB. In: Proc. 27th Int. Cosmic Ray Conference, 7-15 August 2001, Hamburg, Germany, 1622-1625.
Bethe, H. (1930), Zur Theorie des Durchgangs schneller Korpuskularstrahlen durch Materie, Ann. Phys. 397, 3, 325-400, DOI: 10.1002/andp.19303970303 (in German).
Bloch, F. (1933), Bremsvermögen von Atomen mit mehreren Elektronen, Z. Phys., 81, 5-6, 363-376, DOI: 10.1007/BF01344553 (in German).
Bohr, N. (1913), On the theory of the decrease of velocity of moving electrified particles on passing through matter, Philos. Mag. Ser. 6 25, 145, 10-31, DOI: 10.1080/14786440108634305.
Brasseur, G.P., and S. Solomon (1986), Aeronomy of the Middle Atmosphere, Chemistry and Physics of the Stratosphere and Mesosphere, 2 ed., Atmospheric and Oceanographic Sciences Library, Reidel Publ. Comp., Dordrecht, 452 pp.
De Nolfo, G.A., N.E. Yanasak, W.R. Binns, A.C. Cummings, A.J. Davis, J.S. George, P.L. Hink, M.H. Israel, R.A. Leske, R.A. Mewaldt, E.C. Stone, T.T. von Rosenvinge, and M.E. Wiedenbeck (2003), New measurements of the Li, Be, and B isotopes as a test of cosmic ray transport models. In: Proc. 28th Int. Cosmic Ray Conference, 31 July – 7 August 2003, Tsukuba, Japan, 1777-1780.
Desorgher, L., E.O. Flückiger, M. Gurtner, M.R. Moser, and R. Bütikofer (2005), Atmocosmics: A GEANT 4 code for computing the interaction of cosmic rays with the Earth’s atmosphere, Int. J. Modern Phys. A 20, 29, 6802-6804, DOI: 10.1142/S0217751X05030132.
Dorman, L.I. (2004), Cosmic Rays in the Earth’s Atmosphere and Underground, Astrophysics and Space Science Library, Kluwer Academic Publ., Dordrecht.
Dorman, L.I., and I.D. Kozin (1983), Cosmic Radiation in the Upper Atmosphere, Fizmatgiz, Moscow.
Gleeson, L.J., and W.I. Axford (1968), Solar modulation of galactic cosmic rays, Astrophys. J. 154, 1011, DOI: 10.1086/149822.
Heaps, M.G. (1978), Parameterization of the cosmic ray ion-pair production rate above 18 km, Planet. Space Sci. 26, 6, 513-517, DOI: 10.1016/0032-0633(78)90041-7.
Heck, D., J. Knapp, J.N. Capdevielle, G. Schatz, and T. Thouw (1998), CORSIKA: A Monte Carlo code to simulate extensive air showers, Forschungszentrum Karlsruhe, Report FZKA 6019.
Maplesoft (2010), Maple, Version 14, Mathematics with Maple, Maplesoft.
Mishev, A.L. (2009), Recent CORSIKA code simulations for space climate and astrophysics toward to Sun-Earth influences studies. In: Proc. Int. Conference, Fundamental Space Research, 120-123.
Mishev, A.L., and P.I.Y. Velinov (2010), The effect of model assumptions on computations of cosmic ray induced ionization in the atmosphere, J. Atmos. Solar Terr. Phys. 72, 5-6, 476-481, DOI: 10.1016/j.jastp.2010.01.004.
Rosenberg, T.J., and L.J. Lanzerotti (1979), Direct energy inputs to the middle atmosphere. In: NASA, Goddard Space Flight Center, Middle Atmosphere Electrodynamics, SEE N79-25608 16-46, 43-70.
Ruder, H., P.I.Y. Velinov, and L.N. Mateev (2006), Interval coupling of cosmic Ray protons in ionization model for planetary ionospheres and atmospheres, C. R. Acad. Bulg. Sci. 59, 7, 717-722.
Starodubcev, S.V., and A.M. Romanov (1962), Penetration of charged particles through substance, Publ. House Uzb. Acad. Sci., Tashkent (in Russian).
Sternheimer, R.M. (1961), Fundamental principles and methods of particle detection, In: L.C.L. Yuan, and C.-S. Wu (eds.), Methods in Experimental Physics, Vol. 5, Part A. Nuclear Physics, Acad. Press, New York – London.
Tassev, Y.K. (2008), Relationships between low energy proton flux and ozone, temperature and pressure during and after the solar proton event from 20 January 2005, C. R. Acad. Bulg. Sci. 61, 2, 243-252.
Toptygin, I.N. (1985), Cosmic Rays in Interplanetary Magnetic Fields, D. Reidel Publ., Dordrecht, 375 pp.
Usoskin, I.G., K. Alanko-Huotari, G.A. Kovaltsov, and K. Mursula (2005), Heliospheric modulation of cosmic rays: Monthly reconstruction for 1951-2004, J. Geophys. Res. 110, A12108, DOI: 10.1029/2005JA011250.
Usoskin, I.G., L. Desorgher, P. Velinov, M. Storini, E.O. Flückiger, R. Bütikofer, and G.A. Kovalstov (2009), Ionization of the Earth’s atmosphere by solar and galactic cosmic rays, Acta Geophys. 57, 1, 88-101, DOI: 10.2478/s11600-008-0019-9.
Usoskin, I.G., G.A. Kovaltsov, and I.A. Mironova (2010), Cosmic ray induced ionization model CRAC:CRII: An extension to the upper atmosphere, J. Geophys. Res. 115, D10302, DOI: 10.1029/2009JD013142.
Van Allen, J.A. (1952), The nature and intensity of the cosmic radiation. In: C.S. White and OO Benson, Jr. (eds.), Physics and Medicine of the Upper Atmosphere, University of New Mexico Press, Albuquerque.
Velinov, P.I.Y., G. Nestorov, and L. Dorman (1974), Cosmic Ray Influence on the Ionosphere and on the Radiowave Propagation, BAS Publ. House, Sofia.
Velinov, P.I.Y. (1991), Effect of anomalous CR on ionization in high latitude ionosphere, C. R. Acad. Bulg. Sci. 44, 2, 33.
Velinov, P.I.Y., and L. Mateev (2008), Analytical approach to cosmic ray ionization by nuclei with charge Z in the middle atmosphere – Distribution of galactic CR effects, Adv. Space Res. 42, 9, 1586-1592, DOI: 10.1016/j.asr.2007.12.008.
Velinov, P.I.Y., A. Mishev, and L. Mateev (2009), Model for induced ionization by galactic cosmic rays in the Earth atmosphere and ionosphere, Adv. Space Res. 44, 9, 1002-1007, DOI: 10.1016/j.asr.2009.06.006.
Wolfram, S. (2008), Mathematica, Version 7.0, Wolfram Research Inc., Champaign.
Cytuj : Vitkulin, A. V. ,Semenov, V. Y. ,Majewski, E. ,Nenovski, P. ,Sayil, N. ,Nguyen, N. T. ,Neska, A. ,Tokarczyk, T. ,Asfahani, J. ,Pietruczuk, A. ,Hattermann, F. F. ,Marghany, M. ,Velinov, P. I. Y. , Numerical calculation of cosmic ray ionization rate profiles in the middle atmosphere and lower ionosphere with relation to characteristic energy intervals. Acta Geophysica Vol. 61, no. 2/2013