On Choosing Effective Elasticity Tensors Using a Monte-Carlo Method

Czasopismo : Acta Geophysica
Tytuł artykułu : On Choosing Effective Elasticity Tensors Using a Monte-Carlo Method

Autorzy :
Karakostas, V.
Geophysics Department, Aristotle University of Thessaloniki, Thessaloniki, Greece, vkarak@geo.auth.gr,
Papadimitriou, E.
Geophysics Department, Aristotle University of Thessaloniki, Thessaloniki, Greece, ritsa@geo.auth.gr,
Mesimeri, M.
Geophysics Department, Aristotle University of Thessaloniki, Thessaloniki, Greece, mmesimer@geo.auth.gr,
Paradisopoulou, P.
Geophysics Department, Aristotle University of Thessaloniki, Thessaloniki, Greece, ppara@geo.auth.gr,
Gkarlaouni, Ch.
Geophysics Department, Aristotle University of Thessaloniki, Thessaloniki, Greece, hagarl@geo.auth.gr,
Trojanowski, J.
Institute of Geophysics, Polish Academy of Sciences, Warszawa, Poland, jtroj@igf.edu.pl,
Plesiewicz, B.
Institute of Geophysics, Polish Academy of Sciences, Warszawa, Poland,
Wiszniowski, J.
Institute of Geophysics, Polish Academy of Sciences, Warszawa, Poland,
Danek, T.
Department of Earth Sciences, Memorial University of Newfoundland, St. John’s, Canad,
Slawinski, M. A.
Department of Geoinformatics and Applied Computer Science, AGH – University of Science and Technology, Kraków, Poland,
Abstrakty : Department of Earth Sciences, Memorial University of Newfoundland, St. John’s, Canada A generally anisotropic elasticity tensor can be related to its closest counterparts in various symmetry classes. We refer to these counterparts as effective tensors in these classes. In finding effective tensors, we do not assume a priori orientations of their symmetry planes and axes. Knowledge of orientations of Hookean solids allows us to infer properties of materials represented by these solids. Obtaining orientations and parameter values of effective tensors is a highly nonlinear process involving finding absolute minima for orthogonal projections under all three-dimensional rotations. Given the standard deviations of the components of a generally anisotropic tensor, we examine the influence of measurement errors on the properties of effective tensors. We use a global optimization method to generate thousands of realizations of a generally anisotropic tensor, subject to errors. Using this optimization, we perform a Monte Carlo analysis of distances between that tensor and its counterparts in different symmetry classes, as well as of their orientations and elasticity parameters.

Słowa kluczowe : anisotropy, vertical seismic profile, inversion,
Wydawnictwo : Instytut Geofizyki PAN
Rocznik : 2015
Numer : Vol. 63, no. 1
Strony : 45 – 61
Bibliografia : 1 Bόna, A. (2009), Symmetry characterization and measurement errors of elasticity tensors, Geophysics 74, 5, 75-78, DOI: 10.1190/1.3184013.
2 Chapman, C. (2004), Fundamentals of Seismic Wave Propagation, Cambridge University Press, Cambridge.
3 Clerc, M., and J. Kennedy (2002), The particle swarm – explosion, stability, and convergence in a multidimensional complex space, IEEE Trans. Evolut. Comp. 6, 1, 58-73, DOI: 10.1109/4235.985692.
4 Danek, T., M. Kochetov, and M.A. Slawinski (2013), Uncertainty analysis of effective elasticity tensors using quaternion-based global optimization and Monte-Carlo method, Q. J. Mech. Appl. Math. 66, 2, 253-272, DOI:10.1093/qjmam/hbt004.
5 Dewangan, P., and V. Grechka (2003), Inversion of multicomponent, multiazimuth, walkawayVSP data for the stiffness tensor, Geophysics 68, 3, 1022-1031, DOI: 10.1190/1.1581073.
6 Donelli, M., G. Franceschini, A. Martini, and A. Massa (2006), An integrated multiscaling strategy based on a particle swarm algorithm for inverse scattering problems, IEEE Trans. Geosci. Remote Sens. 44, 2, 298-312, DOI:10.1109/TGRS. 2005.861412.
7 Gazis, D.C., I. Tadjbakhsh, and R.A. Toupin (1963), The elastic tensor of given symmetry nearest to an anisotropic elastic tensor, Acta Crystallogr. 16, 9, 917-922, DOI: 10.1107/S0365110X63002449.
8 Grechka, V., and M. Kachanov (2006), Seismic characterization of multiple fracture sets: Does orthotropy suffice? Geophysics 71, 3, D93-D105, DOI: 10.1190/1.2196872.
9 Kennedy, J., and R. Eberhart (1995), Particle swarm optimization. In: Proc. IEEE Int. Conf. Neural Networks, 27 November – 1 December 1995, Perth, Australia, 1942-1948.
10 Kochetov, M., and M.A. Slawinski (2009a), Estimating effective elasticity tensors from Christoffel equations, Geophysics 74, 5, 67-73, DOI: 10.1190/1.3155163.
11 Kochetov, M., and M.A. Slawinski (2009b), On obtaining effective orthotropic elasticity tensors, Q. J. Mech. Appl. Math. 62, 2, 149-166, DOI: 10.1093/qjmam/hbp001.
12 Mathai, A.M., and S.B. Provost (1992), Quadratic Forms in Random Variables: Theory and Applications, Statistics: Textbooks and Monographs, Vol. 126, Dekker, New York.
13 Norris, A.N. (2006), The isotropic material closest to a given anisotropic material, J. Mech. Mater. Struct. 1, 2, 223-238, DOI: 10.2140/jomms.2006.1.223.
14 Slawinski, M.A. (2010), Waves and Rays in Elastic Continua, World Scientific Publ., Singapore.
15 Stillwell, J. (2008), Naive Lie Theory. Undergraduate Texts in Mathematics, Springer, New York, DOI: 10.1007/978-0-387-78214-0.
16 Tarantola, A. (2005), Inverse Problem Theory and Methods for Model Parameter
Estimation, SIAM, Philadelphia.
17 Tsvankin, I. (1997), Anisotropic parameters and P-wave velocity for orthorhombic media, Geophysics 62, 4, 1292-1309, DOI: 10.1190/1.1444231.
18 Tsvankin, I., and V. Grechka (2011), Seismology of Azimuthally Anisotropic Media and Seismic Fracture Characterization, Geophysical References Series, Society of Exploration Geophysicists, DOI: 10.1190/1.9781560802839.
DOI :
Cytuj : Karakostas, V. ,Papadimitriou, E. ,Mesimeri, M. ,Paradisopoulou, P. ,Gkarlaouni, Ch. ,Trojanowski, J. ,Plesiewicz, B. ,Wiszniowski, J. ,Danek, T. ,Slawinski, M. A. , On Choosing Effective Elasticity Tensors Using a Monte-Carlo Method. Acta Geophysica Vol. 63, no. 1/2015
facebook