Journal : Acta Geophysica
Article : On the testing of seismicity models

Authors :
Vallianatos, F.
Technological Educational Institute of Crete, Laboratory of Geophysics and Seismology, Crete, Greece, fvallian@chania.teicrete.gr,
Tsallis, C.
Centro Brasileiro de Pesquisas Fisicas and National Institute of Science and Technology for Complex Systems, Rio de Janeiro, Brazil, tsallis@cbpf.br,
Sotolongo-Costa, O.
Catedra de Sistemas Complejos “Henri Poincare”, Universidad de La Habana, osotolongo@fisica.uh.cu,
Celikoglu, A.
Department of Physics, Faculty of Science, Ege University, Izmir, Turkey, ahmet.celikoglu@ege.edu.tr,
Abe, S.
Department of Physical Engineering, Mie University, Mie, Japan, suabe@sf6.so-net.ne.jp,
Bunde, A.
Institut fur Theoretische Physik, Giessen, Germany, Armin.Bunde@uni-giessen.de,
Donner, R.
Research Domain IV – Transdisciplinary Concepts & Methods, Potsdam Institute for Climate Impact Research, Potsdam, Germany, reik.donner@pik-potsdam.de,
Molchan, G.
International Institute of Earthquake Prediction Theory and Mathematical Geophysics, Russian Academy of Sciences, Moscow, Russia, molchan@mitp.ru,
Abstract : Recently a likelihood-based methodology has been developed by the Collaboratory for the Study of Earthquake Predictability (CSEP) with a view to testing and ranking seismicity models. We analyze this approach from the standpoint of possible applications to hazard analysis. We arrive at the conclusion that model testing can be made more efficient by focusing on some integral characteristics of the seismicity distribution. This can be achieved either in the likelihood framework but with economical and physically reasonable coarsening of the phase space or by choosing a suitable measure of closeness between empirical and model seismicity rate in this space.

Keywords : statistical seismology, earthquake forecasting, earthquake likelihood models,
Publishing house : Instytut Geofizyki PAN
Publication date : 2012
Number : Vol. 60, no. 3
Page : 624 – 637

Bibliography
: Bolshev, L.N., and N.V. Smirnov (1983), Mathematical Statistical Tables, Nauka, Moscow (in Russian).
Borovkov, A.A. (1984), Mathematical Statistics: Estimation of Parameters, Testing Hypotheses, Nauka, Moscow (in Russian).
Cox, D.R., and D.V. Hinkley (1974), Theoretical Statistics, Chapman and Hall, London.
Field, E.H. (2007), Overview of the Working Group for the development of Regional Earthquake Likelihood Models (RELM), Seismol. Res. Lett. 78, 1, 7-16, DOI: 10.1785/gssrl.78.1.7.
Gerstenberger, M.C., D.A. Rhoades, M.W. Stirling, R. Brownrigg, and A. Christophersen (2009), Continued development of the New Zealand Earthquake Forecast Testing Centre, GNS Science Consultancy Report 2009/182, GNS Science, Lower Hutt.
Giardini, D. (1999), The Global Seismic Hazard Assessment Program (GSHAP) – 1992/1999, Ann. Geophys. 42, 6, 957-974.
Harte, D., and D. Vere-Jones (2005), The entropy score and its uses in earthquake forecasting, Pure Appl. Geophys. 162, 6-7, 1229-1253, DOI: 10.1007/s00024-004-2667-2.
Kagan, Y.Y. (2010), Statistical distributions of earthquake numbers: consequence of branching process, Geophys. J. Inter. 180, 3, 1313-1328, DOI: 10.1111/j.1365-246X.2009.04487.x.
Lombardi, A.M., and W. Marzocchi (2010), The assumption of Poisson seismic-rate variability in CSEP/RELM experiments, Bull. Seismol. Soc. Am. 100, 5A, 2293-2300, DOI: 10.1785/0120100012.
Molchan, G.M. (1997), Earthquake prediction as a decision-making problem, Pure Appl. Geophys. 149, 1, 233-247, DOI: 10.1007/BF00945169.
Molchan, G.M., and V.M. Podgaetskaya (1973), Parameters of global seismicity, Comput. Seismol. 6, 44-66 (in Russian).
Molchan, G., T. Kronrod, and G.F. Panza (1997), Multi-scale seismicity model for seismic risk, Bull. Seismol. Soc. Am. 87, 5, 1220-1229.
Ogata, Y. (1998), Space-time point-process models for earthquake occurrences, Ann. Inst. Statist. Math. 50, 2, 379-402, DOI: 10.1023/A:1003403601725.
Rhoades, D.A., D. Schorlemmer, M.C. Gerstenberger, A. Christophersen, J.D. Zechar, and M. Imoto (2011), Efficient testing of earthquake forecasting models, Acta Geophys. 59, 4, 728-747, DOI: 10.2478/s11600-011-0013-5.
Schorlemmer, D., M.C. Gerstenberger, S. Wiemer, D.D. Jeckson, and D.A. Rhoades (2007), Earthquake likelihood model testing, Seismol. Res. Lett. 78, 17-29, DOI: 10.1785/gssrl.78.1.17.
Schorlemmer, D., J.D. Zechar, M.J. Werner, E.H. Field, D.D. Jackson, T.H. Jordan, and the RELM Working Group (2010), First results of the regional earthquake likelihood models experiment, Pure Appl. Geophys. 167, 8-9, DOI: 10.1007/s0024-010-0081-5.
Werner, M.J., and D. Sornette (2008), Magnitude uncertainties impact seismic rate estimates, forecasts, and predictability experiments, J. Geophys. Res. 113, B08302, DOI: 10.1029/2007JB005427.
Werner, M.J, J.D. Zechar, W. Marzocchi, S. Wiemer, and the CSEP-Italy Working Group (2010), Retrospective evaluation of the five-year and ten-year CSEP-Italy earthquake forecasts, Ann. Geophys. 53, 3, 11-30, DOI: 10.4401/ag-4840.
Werner, M.J., A. Helmstetter, D.D. Jackson, and Y.Y. Kagan (2011), High resolution long-term and short-term earthquake forecasts for California, Bull. Seismol. Soc. Am. 101, 4, 1630-1648, DOI: 10.1785/0120090340.
Zechar, J.D., and T.H. Jordan (2010a), The area skill score statistic for evaluating earthquake predictability experiments, Pure Appl. Geophys. 167, 8-9, 893-906, DOI: 10.1007/ s00024-010-0086-0.
Zechar, J.D., and T.H. Jordan (2010b), Simple smoothed seismicity earthquake forecasts for Italy, Ann. Geophys. 53, 3, 99-105, DOI: 10.4401/ag-4845.
Zechar, J.D., M.C. Gerstenberger, and D.A. Rhoades (2010), Likelihood-based tests for evaluating space-rate-magnitude earthquake forecasts, Bull. Seismol. Soc. Am. 100, 3, 1184-1195, DOI: 10.1785/0120090192.
DOI :
Qute : Vallianatos, F. ,Tsallis, C. ,Sotolongo-Costa, O. ,Celikoglu, A. ,Abe, S. ,Bunde, A. ,Donner, R. ,Molchan, G. ,Molchan, G. , On the testing of seismicity models. Acta Geophysica Vol. 60, no. 3/2012
facebook