Paleomagnetism and magnetic mineralogy of metabasites and granulites from Orlica-Śnieżnik Dome (Central Sudetes)

Czasopismo : Acta Geophysica
Tytuł artykułu : Paleomagnetism and magnetic mineralogy of metabasites and granulites from Orlica-Śnieżnik Dome (Central Sudetes)

Autorzy :
Nowożyński, K.
Institute of Geophysics, Polish Academy of Sciences, Warszawa, Poland,,
Ślęzak, K.
Institute of Geophysics, Polish Academy of Sciences, Warszawa, Poland,,
Kądziałko-Hofmokl, M.
Institute of Geophysics, Polish Academy of Sciences, Warszawa, Poland,,
Szczepański, J.
Institute of Geological Sciences, University of Wrocław, Wrocław, Poland,,
Werner, T.
Institute of Geophysics, Polish Academy of Sciences, Warszawa, Poland,,
Jeleńska, M.
Institute of Geophysics, Polish Academy of Sciences, Warszawa, Poland,,
Nejbert, K.
Institute of Geochemistry, Mineralogy and Petrology, Warsaw University, Warszawa, Poland,,
Abstrakty : The results of palaeomagnetic, rock magnetic, and microscopic study of Early Paleozoic metabasites and granulites from the Orlica Śnieżnik Dome (OSD, Sudetes) have been combined with geochronological data. In the eastern part of the OSD (Śnieżnik Massif, SM) ferrimagnetic pyrrhotite is prevalent, accompanied by various amounts of Fe-oxides. In the western part of the OSD (Orlica-Bystrzyca Massif, OBM) Fe-oxides dominate. All magnetic minerals originated during hydrothermal and weathering processes. The palaeomagnetic study revealed the presence of three secondary components of natural remanence: Late Carboniferous, Late Permian, and Mesozoic. Two Paleozoic components are related to volcanic activity in the Sudetes. They are carried by pyrrhotite and Fe-oxides and were isolated only in SM rocks. The Mesozoic component was determined in both parts of the OSD and is carried by Fe-oxides. It covers a time span, from ~160 to ~40 Ma, corresponding to a long period of alteration.

Słowa kluczowe : Sudetes, Orlica-Śnieżnik Dome, Paleozoic, metabasites, paleomagnetism, rock magnetism,
Wydawnictwo : Instytut Geofizyki PAN
Rocznik : 2013
Numer : Vol. 61, no. 3
Strony : 535 – 568
Bibliografia : Aleksandrowski, P., and S. Mazur (2002), Collage tectonics in the northeasternmost part of the Variscan Belt: the Sudetes, Bohemian Massif, Geol. Soc. London Sp. Publ. 201, 237-277, DOI: 10.1144/GSL.SP.2002.201.01.12.
Anczkiewicz, R., J. Szczepański, S. Mazur, C. Storey, Q. Crowley, I.M. Villa, M.F. Thirwall, and T.E. Jeffries (2007), Lu-Hf geochronology and trace element distribution in garnet: Implications for uplift and exhumation of ultra-high pressure granulites in the Sudetes, SW Poland, Lithos 95, 3-4, 363-380, DOI: 10.1016/j.Lithos.2006.09.001.
Aramowicz, A., A.A. Anczkiewicz, and S. Mazur (2006), Fission-track dating of apatite from the Góry Sowie Massif, Polish Sudetes, NE Bohemian Massif: implications for post-Variscan denudation and uplift, Neues Jb. Miner. Abh. 182, 3, 221-229, DOI: 10.1127/0077-7757/2006/0046.
Awdankiewicz, M. (1999), Volcanism in a late Variscan intramontane trough: Carboniferous and Permian volcanic centers of the Intra-Sudetic Basin, SW Poland, Geol. Sudet. 32, 1, 13-47.
Awdankiewicz, M. (2004), Sedimentation, volcanism and subvolcanic intrusions in a late Palaeozoic intramontane trough (the Intra-Sudetic Basin, SW Poland), Geol. Soc. London Sp. Pub. 234, 5-11, DOI: 10.1144/GSL.SP. 2004.234.01.02.
Awdankiewicz, M., and R. Kryza (2010), The Chełmiec subvolcanic intrusion (Intra-Sudetic Basin, SW Poland): preliminary SHRIMP zircon age, Miner. Sp. Pap. 37.
Awdankiewicz, H., M. Awdankiewicz, and R. Kryza (2011), Abundant xenocrystic and rare juvenile zircons in rhyolitic ignimbrites: preliminary SHRIMP data from the Lower Permian of the Intra-Sudetic Basin (SW Poland), Miner. Sp. Pap. 38, 69-70.
Bachliński, R., and S. Hałas (2002), K-Ar dating of biotite from the Kudowa Zdrój granitoids (Central Sudetes, SW Poland), Bull. Pol. Acad. Sci. Earth Sci. 50, 2, 113-116.
Badura, J., Z. Pécskay, E. Koszowska, A. Wolska, Z. Zuchiewicz, and B. Przybylski (2006), New data on age and petrological properties of Lower Silesian Cenozoic basaltoids, SW Poland, Prz. Geol. 54, 145-153.
Besse, J., and V. Courtillot (2002), Apparent and true polar wander and the geometry of the geomagnetic field over the last 200 Myr, J. Geophys. Res. 107, B11, 2300, 31, DOI: 10.1029/2000JB000050.
Birkenmajer, K., Z. Pécskay, J. Grabowski, M.W. Lorenc, and P.P. Zagożdżon (2011), Radiometric dating of the tertiary volcanics in Lower Silesia, Poland. VI. K-Ar palaeomagnetic data from basaltic rocks of the West Sudety Mountains and their northern foreland, Ann. Soc. Geol. Pol. 81, 115-131.
Bröcker, M., R. Klemd, M. Cosca, W. Brock, A.N. Larionow, and N. Rodionov (2009), The timing of eclogite facies metamorphism and migmatization in the Orlica-Śnieżnik complex, Bohemian Massif: constraints from a multimethod geochronological study, J. Metamorph. Geol. 27, 5, 385-403, DOI:10.1111/j.1525-1314.2009.00823.x.
Brueckner, H.K., J. Blusztajn, and N. Bakun-Czubarow (1996), Trace element and Sm-Nd ‘age’ zoning in garnets from peridotites of the Caledonian and Variscan Mountains and tectonic implications, J. Metamorphic Geol. 14, 1, 61-73, DOI: 10.1111/j.1525-1314.1996.00061.x.
Buddington, A.F., and D.H. Lindsley (1964), Iron-titanium oxide minerals and synthetic equivalents, J. Petrol. 5, 2, 310-357, DOI: 10.1093/petrology/5.2.310.
Chadima, M., and F. Hrouda (2006), Remasoft 3.0 – a user-friendly paleomagnetic data browser and analyzer, Trav. Géophys. 27, 20-21.
Chaloupský, J., I. Chlupáč, J. Masek, J. Waldhausrova, and J. Chab (1995), Moldanubian region; Tepla-Barrandian Zone (Bohemicum); Stratigraphy. In: R.D. Dallmeyer, W. Franke, and K. Weber (eds.), Pre-Permian Geology of Central and Eastern Europe, Springer-Verlag, Berlin, 379-391.
Chopin, F., K. Schulmann, E. Skrzypek, J. Lehmann, J.R. Dujardin, J.E. Martelat, O. Lexa, M. Corsini, J.B. Edel, P. Štípská, and P. Pitra (2012), Crustal influx, indentation, ductile thinning and gravity redistribution in a continental wedge: Building a Moldanubian mantled gneiss dome with Saxothuringian material (European Variscan belt), Tectonics 31, TC1013, 27, DOI:10.1029/2011TC002951.
Danišík, M., P. Štěpančíková, and N.J. Evans (2012), Constraining long-term denudation and faulting history in intraplate regions by multisystem thermochronology: An example of the Sudetic Marginal Fault (Bohemian Massif, Central Europe), Tectonics 31, TC2003, DOI: 10.1029/ 2011TC003012.
Don, J. (1996), The Late Cretaceous Nysa Graben; implications for Mesozoic-Cenozoic fault-block tectonics of the Sudetes, Z. Geol. Wissenschaft. 24, 317-324.
Dubińska, E., P. Bylina, and A. Kozłowski (2004), Garnets from Lower Silesia rodingites: constraints from their chemistry, Prace Spec. Pol. Tow. Mineral. 24, 135-139.
Dunlop, D.J. (2002), Theory and application of the Day plot (Mrs/Ms versus Hcr/Hc). 2. Application to data for rocks, sediments, and soils, J. Geophys. Res. 107, B3, 2057, DOI: 10.1029/2001JB000487.
Floyd, P.A., J.A. Winchester, J. Ciesielczuk, A. Lewandowska, J. Szczepański, and K. Turniak (1996), Geochemistry of early Palaeozoic amphibolites from the Orlica-Śnieżnik dome, Bohemian massif: petrogenesis and palaeotectonic aspects, Geol. Rundsch. 85, 2, 225-238, DOI: 10.1007/BF02422230.
Franke, W., and A. Żelaźniewicz (2000), The eastern termination of the Variscides: terrane correlation and kinematic evolution, Geol. Soc. London Sp. Publ. 179, 63-86, DOI: 10.1144/GSL.SP.2000.179.01.06.
Frost, B.R., K.R. Chamberlain, and J.C. Schumacher (2001), Sphene (titanite): phase relations and role as a geochronometer, Chem. Geol. 172, 1-2, 131-148, DOI: 10.1016/S0009-2541(00)00240-0.
Gordon, S.M., D.A. Schneider, M. Manecki, and D.K. Holm (2005), Exhumation and metamorphism of an ultrahigh-grade terrane: geochronometric investigations of the Sudete Mountains (Bohemia), Poland and Czech Republic, J. Geol. Soc. 162, 5, 841-855, DOI: 10.1144/0016-764904-078.
Gunia, T. (1990), Acritarcha i mikroproblematyki z wapieni krystalicznych okolicy Romanowa Górnego (Sudety Środkowe – Krowiarki), Geol. Sudetica 24, 101-137 (in Polish).
Haggerty, S.E. (1991), Oxide textures; a mini-atlas, Rev. Mineral. Geochem. 25, 1, 129-219.
Harlov, D.E., and E.C. Hansen (2005), Oxide and sulphide isograds along a Late Archean, deep-crustal profile in Tamil Nadu, south India, J. Metamorph. Geol. 23, 4, 241-259, DOI: 10.1111/j.1525-1314.2005.00574.x.
Ilnicki, S., J. Szczepański, and Ch. Pin (2012), From back-arc to rifted margin: Geochemical and Nd isotopic records in Neoproterozoic? – Cambrian metabasites of the Bystrzyckie and Orlickie Mountains (Sudetes, SW Poland), Gondwana Res., DOI: 10.1016/
Jastrzębski, M., A. Żelaźniewicz, I. Nowak, M. Murtezi, and A.N. Larionov (2010), Protolith age and provenance of metasedimentary rocks in Variscan allochthon units: U-Pb SHRIMP zircon data from the Orlica-Śnieżnik Dome, West Sudetes, Geol. Mag. 147, 3, 416-433, DOI: 10.1017/ S0016756809990501.
Jeleńska, M., M. Kądziałko-Hofmokl, and A. Żelaźniewicz (2003), The Devonian-Permian APWP for the West Sudetes, Poland, Stud. Geophys. Geod. 47, 2, 419-434, DOI: 10.1023/A:1023788127994.
Kądziałko-Hofmokl, M. (2001), Rock-magnetic study of Gogołów-Jordanów serpentinite unit of the Paleozoic Sudetic ophiolite (South Poland), Ofioliti 26, 2B, 425-432.
Kądziałko-Hofmokl, M., J. Kruczyk, S. Mazur, and J. Siemiątkowski (2003), Paleomagnetism of the upper Proterozoic and Devonian rocks from the Kłodzko Metamorphic Complex in the West Sudetes (SW Poland): tectonic implications for the Variscan belt of Central Europe, Tectonophysics 377, 1, 83-99, DOI: 10.1016/j.tecto.2003.08.021.
Kądziałko-Hofmokl, M., M. Jeleńska, P. Bylina, E. Dubińska, K. Delura, and K. Nejbert (2006), Paleomagnetism of Paleozoic ultrabasic rocks from the Sudetes Mts (SW Poland): tectonic implications, Geophys. J. Int. 167, 1, 24-42, DOI: 10.111/j.1365-246X.2006.03087.x.
Kądziałko-Hofmokl, M., K. Delura, P. Bylina, M. Jeleńska, and J. Kruczyk (2008), Mineralogy and magnetism of Fe-Cr spinel series minerals from podiform chromitites and dunites from Tąpadła (Sudetic ophiolite, SW Poland) and their relationship to paleomagnetic results of the dunites, Geophys. J. Int. 175, 3, 885-900, DOI: 10.1111/j.1365-246X.2008.03933x.
Kirschvink, J.L. (1980), The least-squares line and plane and the analysis of palaeomagnetic data, Geophys. J. Roy. Astr. Soc. 62, 3, 699-718, DOI:10.1111/j.1365-246X.1980.tb02601.x.
Kissin, S.A., and S.D. Scott (1982), Phase relations involving pyrrhotite below 350 degrees C, Econ. Geol. 77, 7, 1739-1754, DOI: 10.2113/gsecongeo.77.7.1739.
Kontny, A., H. de Wall, T.G. Sharp, and M. Pósfai (2000), Mineralogy and magnetic behavior of pyrrhotite from a 260°C section at the KTB drilling site, Germany, Am. Mineral. 85, 10, 1416-1427.
Kryza, R., and M. Awdankiewicz (2012), Ambiguous geological position of Carboniferous rhyodacites in the Intra-Sudetic Basin (SW Poland) clarified by SHRIMP zircon ages, Geol. Q. 56, 1, 55-66.
Kullerud, G. (1986), Monoclinic pyrrhotite, Bull. Geol. Soc. Fin. 58, 293-305.
Lange, U., M. Bröcker, R. Armstrong, A. Żelaźniewicz, E. Trapp, and K. Mezger (2005a), The orthogneisses of the Orlica-Śnieżnik complex (West Sudetes, Poland): geochemical characteristics, the importance of pre-Variscan migmatization and constraints on the cooling history, J. Geol. Soc. 162, 973-984, DOI: 10.1144/0016-764904-095.
Lange, U., M. Bröcker, R. Armstrong, E. Trapp, and K. Mezger (2005b), Sm-Nd and U-Pb dating of high-pressure granulites from the Złote and Rychleby Mts (Bohemian Massif, Poland and Czech Republic), J. Metamorph. Geol. 23, 3, 133-145, DOI: 10.1111/j.1525-1314.2005.00566.x.
Lowrie, W. (1990), Identification of ferromagnetic minerals in a rock by coercivity and unblocking temperature properties, Geophys. Res. Lett. 17, 2, 159-162, DOI: 10.1029/GL017i002p00159.
Machowiak, K., R. Armstrong, R. Kryza, and A. Muszyński (2008), Late-orogenic magmatism in the Central European Variscides: SHRIMP U-Pb zircon age constraints from the Żeleźniak intrusion, Kaczawa Mountains, West Sudetes, Geol. Sudetica 40, 1-18.
Maluski, H., P. Rajlich, and J. Souček (1995), Pre-variscan, Variscan and Early Alpine thermo-tectonic history of the north-eastern Bohemian Massif: An 40Ar/39Ar study, Geol. Rundsch. 84, 2, 345-358, DOI: 10.1007/BF00260445.
Marheine, D., V. Kachlík, H. Maluski, F. Patočka, and A. Żelaźniewicz (2002), The 40Ar/39Ar ages from the West Sudetes (NE Bohemian Massif); constraints on the Variscan polyphase tectonothermal development, Geol. Soc. London Sp. Publ. 201, 133-155, DOI: 10.1144/GSL.SP.2002.201.01.07.
Mazur, S., J. Szczepański, K. Turniak, and N.J. McNaughton (2012), Location of the Rheic suture in the eastern Bohemian Massif: evidence from detrital zircon data, Terra Nova 24, 3, 199-206, DOI: 10.1111/j.1365-3121.2011.01053.x.
McEnroe, S.A., R.J. Harrison, M.J. Jackson, A.M. Hirt, P. Robinson, F. Langenhorst, F. Heidelbach, T. Kasama, A. Putnis, L.L. Brown, and U. Golla-Schindler (2005), Lamellar magnetism: effects of interface versus exchange interactions of nanoscale exsolutions in the ilmenite-hematite system, J. Phys: Conf. Ser. 17, 154-167, DOI: 10.1088/1742-6596/17/1/022.
Morimoto, N., A. Gyobu, H. Mukaiyama, and E. Izawa (1975), Crystallography and stability of pyrrhotites, Econ. Geol. 70, 4, 824-833, DOI: 10.2113/gsecongeo.70.4.824.
Mücke, A., and J.N. Bhadra Chaudhuri (1991), The continuous alteration of ilmenite through pseudorutile to leucoxene, Ore Geol. Rev. 6, 1, 25-44, DOI:10.1016/0169-1368(91)90030-B.
Nowak, I., and A. Żelaźniewicz (2006), Geochemistry of metabasites in the Stronie Group and Nové Město Group, the Orlica-Śnieżnik dome, West Sudetes, GeoLines 20, 102-201.
Özdemir, Ö., and D.J. Dunlop (2010), Hallmarks of maghemitization in lowtemperature remanence cycling of partially oxidized magnetite nanoparticles, J. Geophys. Res. 115, B02101, DOI: 10.1029/2009JB006756.
Parry, M., P. Štípská, K. Schulmann, F. Hrouda, J. Ježek, and A. Kröner (1997), Tonalite sill emplacement at an oblique plate boundary: northeastern margin of the Bohemian Massif, Tectonophysics 280, 1-2, 61-81, DOI:10.1016/S0040-1951(97)00146-7.
Pressler, R.E., D.A. Schneider, M.S. Petronis, D.K. Holm, and J.W. Geissman (2007), Pervasive horizontal fabric and rapid vertical extrusion: Lateral overturning and margin sub-parallel flow of deep crustal migmatites, northeastern Bohemian Massif, Tectonophysics 443, 1-2, 19-36, DOI:10.1016/j.tecto.2007.07.003.
Ramdohr, P. (1980), The Ore Minerals and their Intergrowths, Pergamon Press, Oxford.
Scheck, M., U. Bayer, V. Otto, J. Lamarche, D. Banka, and T. Pharaoh (2002), The Elbe Fault System in North Central Europe – a basement controlled zone of crustal weakness, Tectonophysics 360, 1-4, 281-299, DOI: 10.1016/S0040-1951(02)00357-8.
Schneider, D.A., S.J. Zahniser, J.M. Glascock, S.M. Gordon, and M. Manecki (2006), Thermochronology of the west Sudetes (Bohemian Massif): Rapid and repeated eduction in the eastern Variscides, Poland and Czech Republic, Am. J. Sci. 306, 10, 846-873, DOI: 10.2475/10.2006.03.
Schulmann, K., and R. Gayer (2000), A model for a continental accretionary wedge developed by oblique collision: the NE Bohemian Massif, J. Geol. Soc. 157, 2, 401-416, DOI: 10.1144/jgs.157.2.401.
Schwarz, E.J., and D.J. Vaughan (1972), Magnetic phase relations of pyrrhotite, J. Geomagn. Geoelectr. 24, 4, 441-458, DOI: 10.5636/jgg.24.441.
Szczepański, J. (2002), The 40Ar/39Ar cooling ages of white micas from the Jegłowa Beds (Strzelin Massif, Fore-Sudetic Block, SW Poland), Geol. Sudetica 34, 1-7.
Szczepara, N., M. Awdankiewicz, and R. Kryza (2011), The age of rhyolitic volcanism in the North-Sudetic Basin, SW Poland: preliminary SHRIMP zircon results, Miner. Sp. Pap. 38, 173-174.
Štípská, P., K. Schulmann, A.B. Thompson, J. Ježek, and A. Kröner (2001), Thermo-mechanical role of a Cambro-Ordovician paleorift during the Variscan collision: the NE margin of the Bohemian Massif, Tectonophysics 332, 1-2, 239-253, DOI: 10.1016/S0040-1951(00)00259-6.
Štípská, P., K. Schulmann, and A. Kröner (2004), Vertical extrusion and middle crustal spreading of omphacite granulite: a model of syn-convergent exhumation (Bohemian Massif, Czech Republic), J. Metamorph. Geol. 22, 3, 179-198, DOI: 10.1111/j.1525-1314.2004.00508.x.
Temple, A.K. (1966), Alteration of ilmenite, Econ. Geol. 61, 4, 695-714, DOI:10.2113/gsecongeo.61.4.695.
Tokonami, M., K. Nishiguchi, and N. Morimoto (1972), Crystal structure of a monoclinic pyrrhotite (Fe7S8), Am. Mineral. 57, 1066-1080.
Torsvik, T.H., and M.A. Smethurst (1994), GMAP for Windows (V.1) – Geographic mapping and paleoreconstruction package (manual), NGU, Trondheim, Norway.
Turniak, K., S. Mazur, and R. Wysoczański (2000), SHRIMP zircon geochronology and geochemistry of the Orlica-Śnieżnik gneisses (Variscan belt of Central Europe) and their tectonic implications, Geodin. Acta 13, 5, 293-312, DOI:10.1016/S0985-3111(00)01045-7.
Ulrych, J., P. Povondra, E. Pivec, J. Rutšek, J. Bendl, and I. Bilik (1996), Alkaline ultramafic sill at Dvůr Králové nad Labem, eastern Bohemia: petrological and geochemical constraints, Acta Univ. Carol. Geol. 40, 53-79.
Ulrych, J., J. Dostal, J. Adamovič, E. Jelínek, P. Špaček, E. Hegner, and K. Balogh (2011), Recurrent Cenozoic volcanic activity in the Bohemian Massif (Czech Republic), Lithos 123, 1-4, 133-144, DOI: 10.1016/j.lithos.2010.12.008.
Ventura, B., and F. Lisker (2003), Long-term landscape evolution of the northeastern margin of the Bohemian Massif: apatite fission-track data from the Erzgebirge (Germany), Int. J. Earth Sci. (Geol. Rundsch.) 92, 5, 691-700, DOI: 10.1007/s00531-003-0344-9.
Ventura, B., F. Lisker, and J. Kopp (2009), Thermal and denudation history of the Lusatian Block (NE Bohemian Massif, Germany) as indicated by apatite fission-track data, Geol. Soc. London Sp. Publ. 324, 181-192, DOI:10.1144/SP324.14.
Westphal, M., J.B. Edel, M. Kądziałko-Hofmokl, M. Jeleńska, and W. Grocholski (1987), Paleomagnetic study of Upper Carboniferous volcanics from Sudetes (Poland), J. Geophys. 61, 90-96.
Wojewoda, J. (1997), Upper Cretaceous littoral-to-shelf succession in the Intrasudetic Basin and Nysa trough, Sudety Mts. In: J. Wojewoda (ed.), Obszary Źródłowe: Zapis w Osadach, WIND, Wrocław, 81-96.
Xirouchakis, D., and D.H. Lindsley (1998), Equilibria among titanite, hedenbergite, fayalite, quartz, ilmenite and magnetite; experiments and internally consistent thermodynamic data for titanite, Am. Mineral. 83, 7-8, 712-725.
Cytuj : Nowożyński, K. ,Ślęzak, K. ,Kądziałko-Hofmokl, M. ,Szczepański, J. ,Werner, T. ,Jeleńska, M. ,Nejbert, K. , Paleomagnetism and magnetic mineralogy of metabasites and granulites from Orlica-Śnieżnik Dome (Central Sudetes). Acta Geophysica Vol. 61, no. 3/2013