Power unit impedance and distance protection functions during faults in the external power grid

Czasopismo : Acta Energetica
Tytuł artykułu : Power unit impedance and distance protection functions during faults in the external power grid

Autorzy :
Jaskólski, M.
Gdańsk University of Technology, mjask@ely.pg.gda.pl,
Lizer, M.
Institute of Power Engineering in Warsaw, marcin.lizer@ien.com.pl,
Abstrakty : This paper presents the problem of the risk of an unnecessary tripping of a generation unit’s underimpedance protection functions in circumstances of generator power swings following elimination of long-lasting fault in the external power grid. The fi rst part describes typical solutions of a generator impedance protection function (21e) and unit distance protection function (21s). Starting characteristics of these protection functions are shown, as well as their typical operating logics and ways of calculating their settings. Then exemplary (the most common) solutions of unit under-impedance relays power swing blocking functions are described. Following this introduction, the issues of the threat of unnecessary operation of fast-tripping protection zones of 21e and 21s protection functions are described, which arises in the circumstances of generator asynchronous power swings occurring after elimination of long-lasting faults in the grid supplied by the power unit. The paper also shows that the available power swing blocking functions may not be able to correctly detect the described conditions, thus allowing the unnecessary operation of under-impedance relays. How an impedance calculation algorithm aff ects the impedance trajectory seen by a protection relay is also presented.

W artykule przedstawiono problem ryzyka zbędnego działania zabezpieczeń podimpedancyjnych jednostki wytwórczej, w czasie kołysań mocy następujących po długo likwidowanych zwarciach w sieci zewnętrznej. W pierwszej części opisano zabezpieczenie impedancyjne generatora (21e) i odległościowe bloku (21s). Pokazano charakterystyki rozruchowe, logiki działania i sposób nastawiania tych zabezpieczeń. Następnie opisano przykładowe (najczęściej stosowane) rozwiązania blokad kołysaniowych zabezpieczeń podimpedancyjnych bloku. Po powyższym wprowadzeniu opisano problematykę zagrożenia zbędnym działaniem szybkodziałających stref zabezpieczeń 21e i 21s, jakie powstaje w chwili rozwijania się asynchronicznych kołysań generatora, następujących po przedłużającej się likwidacji zwarć w sieci, na którą pracuje blok. W artykule pokazano też, że dostępne blokady kołysaniowe mogą nie być w stanie poprawnie wykryć opisywanej sytuacji, dopuszczając do zbędnego działania powyższych zabezpieczeń. Pokazano też, jak na trajektorię impedancji widzianą przez przekaźnik wpływa zastosowany algorytm wyznaczania impedancji.

Słowa kluczowe : blok energetyczny, kołysania mocy, stabilność, zabezpieczenia impedancyjne bloku, power unit, power swing, stability, unit impedance protection,
Wydawnictwo : ENERGA SA
Rocznik : 2012
Numer : nr 4
Strony : 22 – 41
Bibliografia : 1. Żydanowicz J., Elektroenergetyczna automatyka zabezpieczeniowa Automatic protections for power systems, Warsaw, WNT 1966.
2. Winkler W., Wiszniewski A., Automatyka zabezpieczeniowa w systemach elektroenergetycznych Automatic protections in power systems, Warsaw, WNT 1999.
3. Kopex Electric Systems SA, Biblioteka funkcji przekaźników, logiki, pomiarów Library of protection functions, operating logic, measurements, Tychy 2006.
4. Kopex Electric Systems SA, , CZAZ-GT: opis zabezpieczeń CZAZ-GT: protection functions descriptions, Tychy 2006.
5. ABB, Application manual REL 531 – High speed line distance protection terminal, 2003.
6. ABB, Generator protection IED REG 670 – Technical reference manual, issue 1.1, Sweden.
7. ABB, Mikroprocesorowe zabezpieczenie generatora REG 316*4 REG 316*4 microprocessor generator protection relay, Warsaw, 1997.
8. Siemens, SIPROTEC 7UM62 V.4.1 Multifunctional Generator, Motor and Transformer Protection relay, 2002.
9. Siemens, SIPROTEC Distance protection 7SA522 V4.65 and higher – Manual, 2009.
10. Machowski J., Regulacja i stabilność systemu elektroenergetycznego Power system control and stability, Ofi cyna Wydawnicza Politechniki Warszawskiej, Warsaw 2007.
11. Bernas S., Systemy elektroenergetyczne Power systems, Warsaw, WNT 1982.
12. PSE Operator SA, Standardowe specyfi kacje techniczne: Zabezpieczenie odległościowe linii blokowej 400 kV, 220 kV, 110 kV Standard Technical Specifi cation “Distance protection of 400 kV, 220 kV, 110 kV unit lines”, Warsaw, Match 2008.
13. Dobrzyński K., Dytry H., Klucznik J., Lizer M., Lubośny Z., Szweicer W., Wróblewska S., Opracowanie katalogu wymagań dla systemów zabezpieczeń elektrycznych generatorów w zakresie stosowanych funkcji i koordynacji ich nastaw z EAZ w sieci przesyłowe – Etap I i II Catalogue of requirements for generator protection systems with regard to their protection functions and their settings coordination with power grid protection relays – Stage I and II, an Institute of Power Engineering and Gdańsk University of Technology study commissioned by PSE Operator SA, Warsaw, 2010 (Stage I) and 2011 (Stage II).
14. Dytry H., Lizer M., Szweicer W., Wróblewska S., Koordynacja zabezpieczeń elektroenergetycznych od zakłóceń zewnętrznych generatorów przyłączonych do szyn rozdzielni bezpośrednio oraz przez transformator blokowy z zabezpieczeniami sieci Coordination of protection functions against external faults of generators connected to substation busbars directly or through a unit transformer with grid protection relays, Institute of Power Engineering, statutory study, Warsaw 2011.
15. Nelles D., Opperskalski H., Digitaler Distanzschutz – Verhalten der Algorihmen bei nichtidealen Eingangssignalen, DUV, Wiesbaden 1991.
DOI :
Cytuj : Jaskólski, M. ,Lizer, M. , Power unit impedance and distance protection functions during faults in the external power grid. Acta Energetica nr 4/2012
facebook